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Abstract— The paper proposes a new strategy for learning
of tasks where the robot interacts with the environment. The
learning relies on the compliant control, which assures compli-
ant behavior in the direction where the motion is constrained
by the environment. The proposed approach learns first the
directions, where the robot should be compliant. Then, it applies
forces in the orthogonal directions and observes the resulting
actions. This simple strategy is very efficient in the learning
of tasks, where the motion is constrained by the environment.
The proposed algorithm was verified both in the simulation and
using real robot in challenging tasks such as learning of door
or drawer opening.

I. INTRODUCTION

For an autonomous robot acting in unstructured environ-
ment or when interacting with humans is necessary that
the robots exhibit compliant behavior. For truly autonomous
robot it is necessary also, that the robot is capable of
autonomously finding new policies and to adapt previously
known policies to the environment changes. Reinforcement
learning is a widely used technique for such purposes.
In robotics, especially for sensory-motor learning, model
free direct statistical policy search algorithms like Pi2 and
PoWER turned to be the most efficient one. They can scale
to high dimensional learning problems usually encountered
in robotics. Note that a humanoid robot can have 30 to
50 d.o.f. and that a typical policy is described with 30 to
100 parameters for each degree of freedom, which results
in a huge search space. This is one of the reasons why
robot learning approach is still inefficient compared to the
capabilities of humans and animals. Techniques like learning
in latent spaces, learning of meta parameters, which more
efficiently describe the learning problem, or covariance ma-
trix adaptation and statistical generalization techniques can
dramatically reduce the search space in RL. However, they
all require at least a partial knowledge of a model of the
process, which can be either given apriori in an explicit form
or inherited from previous experiments.

In the robotics community, tasks that involve interaction
with environment are considered as extremely hard to learn
due to the unknown and possibly changing environment. In
this paper, we show that interacting with the environment
can be advantageous in terms of the learning speed. In our
opinion, learning of constraint tasks can be easier compared
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Stefan Institute, Ljubljana, Slovenia bojan.nemec@ijs.si,
viktor.stefanovski@ijs.si, leon.zlajpah@ijs.si,
ales.ude@ijs.si

to the learning of tasks, where a robot can move freely in
space. The reason is that the environment constrains the
admissible robot movements. Consequently, the number of
parameters, which have to be learned, can be reduced. Of
course, it is necessary to ensure/allow the natural motion
of the mechanism along the constraints imposed by the
environment. A suitable framework for implementing such
strategy is provided by the compliant robot control.

In this article, we present the application of the proposed
methodology by two examples. The first example is the
autonomous learning of opening a door with a robot. Beside
learning the basic motion to open a door, the robot has to
learn also the correct sequence of movements needed unlock
the door, i.e. how to manipulate handles, bolts, etc. Second
case is the drawer opening operation, where it is necessary
to lift the drawer before open it. As before, the robot has to
learn a correct sequence of movements to fulfill the task. In
all this cases, the robot movements were constrained in all
spatial directions except in two of them. Using the proposed
approach the robot was able to learn the required policy in
just a few learning cycles, despite of the fact, that virtually
no previous information about the nature of the problem was
given to the robot.

II. CONTROLLER BASED POLICY SEARCH

In this chapter we introduce a general strategy for the
policy search. The essence of the proposed strategy is that
instead of a random search in the parametrized space of
policies, we apply a direct search in the action space [1].
Whenever a random action results in a movement, we try
to continue this motion using a compliant controller, which
maintains the speed in the current direction and allows motion
along the constraints.

Fig. 1. General scheme for learning of policies which interact with the
environment.

In general we do not know in advance in which directions



are the natural constraints of the system. To find a feasible
motion direction, we apply a random force in a random
direction. If this force results in a movement, we use com-
pliant control to continue the motion initiated by the random
force. The control is realized in the tool coordinate frame
and the control parameters make the robot compliant in all
directions orthogonal to the direction of the motion. These
directions can estimated by applying Frenet-Serret frames [2]
to the resulting motion trajectory. The resulting motion is
supervised by the RL, which, according to the given reward
or cost, decides whether this movement has contributed to
the problem solving or not. We assign intermediate and ter-
minal reward/cost. The intermediate reward/cost is assigned
whenever the robot finds an admissible motion. This way,
we motivate RL algorithms to find policies that result in
a motion. Terminal reward/cost is assigned when the roll-
out is terminated and depends on how successful was the
accomplishment of the task.

Whenever the initiated robot motion stops, we assume
that this is due to the task constraints and we try to find
a new feasible motion by applying again a random force
in a random direction. Following this strategy, the robot
eventually learns how to perform the task in a form of a
parametrized policy. The general scheme of the proposed
learning framework is presented in Fig. 1

III. DOOR OPENING
The door opening is one of the most common operations,

which humanoid robots have to be capable to perform. Doors
are used everywhere in a human populated environments —
to separate rooms, in wardrobes and cabinets, or home appli-
ances such as refrigerator, dishwasher etc. Doors can be very
different: left or right handed, they can be opened by pushing
or pulling, the opening motion can be horizontal, vertical or
sliding, etc. Of course, the policy for the door opening can
be computed analytically [3]. However, this requires detailed
geometrical models of doors. Another possibility is to learn
the corresponding policy from demonstrations combining
different motor primitives [4], [5], [6]. The problem of the
door opening can be also solved by control algorithms, which
exploit natural constraints of the interactive mechanism to
generate the corresponding movement [7], [8], [9]. Despite of
all previously proposed approaches, the door opening remains
a challenging task when the robot has to act autonomously
and the solution cannot be provided in advance. In many
cases it is necessary to unlatch doors, e.g. by moving the
handle appropriately or by releasing the latch before opening
the door. Such compound operations can not be solved using
only the control approaches, the operation sequence has to
be predefined or learned.

A. Controller for door opening

Our approach [10] is inspired by observing how humans
complete such tasks. The basic principle is to apply some

forces or torques in the directions, which are not constraint
by the object or the environment and to make the system
compliant in the orthogonal directions. In this way, the
motion is “guided” by the constraints. Whenever the induced
motion would force the system to move into a constraint, the
compliant controller would align the motion to be orthogonal
to the constraints. Consequently, no calculations of paths or
trajectories are necessary to accomplish the task. The same
strategy can be used for robots, where we apply a virtual force
Fv to the robot end-effector, which pushes the robot in the
moving direction until the task is completed. Our approach
relies on the work of Niemeier and Slotine [7]. It consist of
two blocks; estimation of the direction of the motion, and a
controller, which shapes the force Fv in order to maintain the
desired/admissible velocities. The applied force is calculated
as

Fv = Kp (vd − ‖ṗ‖)dp (1)

where F ∈ R3 is a force vector, applied to the robot
end-effector, p ∈ R3 are the robot end-effector positions,
Kp ∈ R3×3 is a diagonal gain matrix, and scalar vd is the
desired translational end-effector velocity. The direction of
motion dp is the tangent vector of the Frenet-Serret frame. It
can be estimated from ṗ, which might fail in noisy velocity. A
better estimate is obtained using a spatial filtering [7], which
smooths the noisy estimates using a first order filter and
assures, that the filtering does not affect the normalization.
A discrete time implementation of the spatial filter is

dp(k) = dp(k-1) + λ(1− dp(k-1)dTp (k-1))(p(k)− p(k-1)),
(2)

where λ is the filter bandwidth and k denotes the k-th time
sample. In order to control the robot, forces

Fv(k) = Kp(vd(k)− ‖ṗ(k)‖)dp(k) (3)

are applied as command values to the robot controller. The
original formulation [7] neglects the torques. In practice, it
is often necessary to apply also torques, e.g. when turning
the door knobs. Therefore, it is necessary to extend Eq. 1 for
torques. Straightforward extension yields

M = Ko(ωd − ‖ω‖)ω , (4)

where M ∈ R3 is a torque vector, applied to the robot end-
effector, Ko ∈ R3×3 is the diagonal rotational controller gain
matrix, ω ∈ R3 is a vector of robot end-effector instantaneous
velocities, and scalar ωd is the desired rotation velocity. For
the specification of the robot orientation, unit quaternions
are usually used, as they provide convenient singularity free
mathematical notation. We will denote them as Q = {η, ε} ∈
R4, where η and ε are the corresponding scalar and vector
part of the quaternion, respectively. Angular velocities can
be calculated from two subsequent quaternions as

ω(k) = 2 log(Q(k) ∗ Q̄(k − 1)), (5)



where ∗ denotes the quaternion multiplication and the quater-
nion logarithm is calculated as

log(Q) = log(η, ε) =

 arccos(η)
ε

‖ε‖
, η 6= 0

[0, 0, 0]T, otherwise

, (6)

The smoothed direction of the angular motion do can be
calculated as

do(k) = do(k−1)+dTλ(1−do(k−1)dTo (k−1))ω(k), (7)

and is used to calculate the commanded torques

M(k) = Ko(ωd(k)− ‖ω(k)‖)do(k). (8)

dT denotes the sampling frequency.
As we are not controlling directly the robot pose, some of

the joints may move into the limits or the robot may move
into an ill configuration. To prevent such situations, we have
used the available redundant DOFs to optimize the pose of
the robot, i.e. the robot should preserve a predefined pose
whenever possible.

To calculate the motor torques in each sampling interval
k we have used the following joint impedance control law
control

τu(k) = K(qd(k)− q(k)) + D(q̇(k)) + τc(k) +

fdyn(q, q̇, q̈) (9)

τc(k) = JT

[
F (k)
M(k)

]
+ NT (k) τn(k)

where τu ∈ Rn are the commanded torques, K ∈ Rn×n

is a diagonal joint stiffness matrix, D(d) ∈ Rn is the joint
space damping vector, fdyn(q, q̇, q̈) ∈ Rn is the vector that
compensates for the robot non-linear dynamics, J ∈ R6×n

is the robot Jacobian, N ∈ Rn×n is a matrix representing
the projection into the null space of JT , and τn ∈ Rn are
the null-space torques used to optimize the robot motion. To
achieve a compliant robot behavior, we select low gains in K
and set qd = q, which practically means that the robot in very
compliant and it dose not violates the positional constraints
at any time.

Flowing this policy, a robot can perform many tasks from
everyday life such as closing and opening doors, drawers,
sliding doors, etc., without any previous knowledge of the
objects or environment, which are involved in interaction.
It applies forces solely in the direction of the movement,
whereas it is intrinsically compliant in orthogonal direc-
tions. Such approach effectively minimizes internal wrenches,
which can arise in position based policies due to the kine-
matics/dynamics model errors.

However, this approach alone can not generate motion
necessary to perform tasks requiring complex policies, which
are composed of a sequence of various primitives, such as
pushing the door handle and opening the door. Another

problem with this approach arises when there system has
more non-constraint spatial directions then needed to perform
the task. A typical practical example, which can occur is
tasks like door opening, is a backlash, which manifests as
an additional degrees of freedom. In order to overcome
the above mentioned problem, we apply the reinforcement
learning.

B. Learning of compound policy for door opening

In this section we present the implementation of the
strategy described in the section II. The aim is to learn
the appropriate force based policy, which will perform a
compound sequence of operations such as first to unlatch
the door with using the door handle, and then to open the
door. The policy, defined as a sequence of the forces F ∗

and torques M∗, is parametrized as a weighted sum of m
Gaussian radial basis functions (RBFs) for each component
j of the vector F ∗ and M∗,

F ∗
j (s) =

∑m
i=1wf,j,iΨi(s)∑m

i=1 Ψi(s)
s, (10)

M∗
j (s) =

∑m
i=1wm,j,iΨi(s)∑m

i=1 Ψi(s)
s, (11)

Ψi(s) = exp
(
−hi (s− ci)2

)
, (12)

where the free parameters wf,j,i and wm,j,i determine the
shape of force and torque trajectories. Parameters ci are
the centers of RBFs, which are evenly distributed along the
trajectory, hi are the RBFs widths, and s denotes the phase
variable, which will be defined latter.

For the policy learning, we have to implement a switching
policy search strategy proposed in section II. In each learning
cycle the robot first applies the forces and torques learned
so far and checks if they result in a motion. If not, it
perturbs them by some random forces and torques, generated
as uniformly distributed random numbers with a specified
variance,

Fj(s) = F ∗
j (s) +N (0, σ2)

Mj(s) = M∗
j (s) +N (0, σ2),

where σ is the noise variation.
Whenever they result in a motion, it applies the control

strategy given with (3) and (8). The algorithm collects
intermediate costs, applied forces and torques. The roll-out
is ended after the reaching the goal (which is when the door
is opened in our case) or after the maximal allowed time for
each episode has elapsed. At this time, the robot collects the
terminal cost and calculates the new estimate of forces and
torques for the next roll using the PI2 RL algorithm [11].
This procedure is repeated until the robot learns the desired
policy.



Intermediate and terminal cost were assigned as

ci(k) =

 10|vd − ‖ṗ(k)‖|, ϕ̇ > 0

10(0.1− ‖ω(k)‖), otherwise

ct =

 to, ϕ ≥ ϕd

10(ϕd − ϕ), otherwise

where to is the time needed to open the door, and angles ϕ
and ϕd denote the actual and the desired door opening angle,
respectively. The terminal cost is thus lower if the robot opens
the door in shorter time. If it can not open the door in the
given time, the cost is proportional to the remaining angle
needed to open the door. The intermediate cost is decreased
if the robot rotates the handle in the first stage and if it
opens the door with the right speed in the door opening
stage. The set of updated policy parameters wf,j,i and wm,j,i

are calculated with PI2 after each learning cycle using all
previous policy parameters, terminal and intermediate costs.
A detailed description of the PI2 is out of the scope of this
paper. A good step by step instructions how to implement
PI2 can be found in [12]. In order to speed up the learning
and to reject the unsuccessful attempts, the input data to PI2

were reordered after each learning cycle using the importance
sampling [13].

For successful learning, all signals, which are involved in
learning, have to be of equal length and spatially aligned.
Namely, we can not simply compare two actions, that happen
at the same time. Rather, we have to compare actions, that
happen at the same place. Spacial alignment is provided by
the phase variable in the form

s = 1/s0

k=T∑
k=0

(‖ṗ(k)‖+ ζ‖ω(k))‖dT, (13)

where ζ is a scaling factor to provide different scaling for
positional and rotational movement and s0 is an estimated
constant, which assures that the phase remains within the
interval [0, 1].

Next, we have to provide that all signals involved in the
learning (forces, torques and intermediate costs) have equal
lengths. This is accomplished by copying the final value
of signals of all prematurely finished roll outs (in our case
this is when the robot opens the door) until the end. In our
implementation we scaled random search variance σ2 by the
factor α < 1, after the completion of each roll-out. This
choice assures smoother policy search in subsequent cycles.

The experimental evaluation of the proposed algorithm was
implemented on a bi-manual robot composed of two KUKA
LWR4 robot arms, equipped with a Barret hand and mounted
on the torso with one rotational DOF. The task for the robot
was to open a right handed door with the left robot arm while
utilizing the torso rotation. The torso was used to avoid the
joint limits of the robot arm, which was obtained by applying

some motion on the torso in the vicinity of the joint limits
(9) by using the self-motion of the complete robot system.

Fig. 2. Bi-Manual robot during door opening

The setup is shown in Fig. 2. The robot pose required to
grasp the door handle was obtained with kinesthetic guiding
in the zero gravity mode. Control and learning algorithms
were implemented in MATLAB. The control (Eqs. (3) and
(8)) was implemented at the sampling rate of 0.01 sec. On
contrary, learning (Pi2) was implemented at lower sampling
rate of 0.4 sec. The control gains Kp and Ko were exper-
imentally chosen as 50 I, where I is the identity matrix.
They were chosen in such a way that the velocity controller
had the desired tracking performance and that it exhibited
stable operation in given environment conditions (e.g. door
friction, door inertia, etc.) The initial value of the σ2 was set
to 50 (N) and α was 0.97. σ2 is actually the only critical
parameter, which affects both the speed of the learning and
the learned policy. Too small values of σ2 will result in
slow learning, while excessive values can provoke erratic
policies with excessive parameter variations. The length of
the importance sampler was 3. In order to evaluate the success
of the learning, we performed greedy cycle after each 5-th
roll-out, where the robot was controlled only by the learned
forces/torques. The desired velocity vd was set to 0.02 m/s
and the desired opening angle ϕd was 70 deg. We performed
20 experiments with 20 roll-outs of learning. In average, the
robot learned the required policy in 9 roll-outs. The learned
force policy is shown in Fig. 3. Note that this plot shows
learned forces in the tool coordinate system sampled at 0.4
sec interval. The actual forces sent to the robot controller
are then smoothed and interpolated to 0.01 sec interval and
mapped to the robot base frame. We can see that the robot has
learned to manipulate the handle using force Fy and torque
Mz , which both result in the handle rotation, providing that



the robot wrist is compliant. In average, the robot needs 6
sec to open the door after the learning.

Fig. 3. Mean values and standard deviations (shaded regions) of learned
force and torque profiles

IV. DRAWER OPENING

The second task was drawer opening. This task was
implemented and tested in simulated environment. For this
purpose, we applied state of the art MuJoCo HAPTIX
simulation environment [14], which was used to simulate
KUKA LWR 4 robot interacting with the environment. The
environment model was a cabinet that comprised drawer,
sliding doors, vertical doors and swing doors (see Fig. 4).
In order to open the drawer, one has to lift first the drawer
for approx. 1cm in vertical direction (Z) and then to pull it in
the horizontal direction (−X). As no rotational movements
are involved in this task, we were learning only forces in X ,
Y , and Z direction.

We applied identical control and learning algorithms with
identical settings as for door opening experiments. The only
difference was the definition of the cost function. The cost
functions were defined as

ci(k) = 10|vd − ‖ṗ(k)‖|

ct =

 to, px ≥ pl

10(pl − px), otherwise
,

where pl denotes the desired opening distance of the drawer.
Also in this cases we performed 20 learning experiments

with 12 roll-outs. The robot learned the drawer opening
policy in 6 roll-outs in average. The learned force policy is
shown in Fig. 5. Note that here the forces are plotted in the
robot base coordinate system. The blue line shows the vertical
force Fz needed to unlatch the drawer. After the initial lifting
the robot keeps this force since no additional cost was given
for this action. The force Fx in the direction for the drawer
opening actually opens the drawer. Note that the drawer could
not be pulled out of the cabinet due to limiters. Therefore,
the robot kept the learned forces also after the full opening of
the drawer. The orthogonal force Fy , which does not affect

the motion, was close to 0 all the time. The average terminal
cost and the standard deviation of 12 learning cycles for this
learning are shown in Fig. 6.

Fig. 4. Graphical output of MuJoCo simulation of drawer opening

Fig. 5. Mean values and standard deviations (shaded regions) of learned
force profiles

V. CONCLUSION

In the paper, we proposed a framework for learning of
tasks, where the robot motion is constrained by the environ-
ment. The framework joins the benefits of two approaches:
the ability of RL of model-free learning and the efficiency of
the intelligent control. It is especially efficient in cases, where
the motion of the robot is constrained by the environment and
the robot can freely move in just some spatial directions. The
task of the learning part of the algorithm is to determine the
unconstrained degrees of freedom, which are then used for
the task accomplishment. The underlying controller is acting
as exploration in the action space [1]. With this algorithm,
the robot efficiently learns many useful tasks such as door
and drawer opening, closing a valve, pulling a lever, etc. It
can learn also complex motions, e.g. where it is necessary to
manipulate the door handle or latch, without any presumption
how to do this. Note that in this study we learn force based
policies, which are according to our opinion more appropriate
for such tasks and easier to generalize to a small or moderate
environment changes.



Fig. 6. Mean value (red line) and standard deviation (shaded region)
of the terminal cost during learning of drawer opening in the simulated
environment. Learning resulted in successful drawer opening at most after
6 roll outs in all cases.

The proposed approach was verified both in a simulated
environment as well as with a real bi-manual robot, composed
of the two KUKA LWR 4 robot arms mounted on the
torso with 1 DOF. Both simulation and real experiment
demonstrated 100% success of learning.

In this study, we neglected many important issues, such
as how to grab the handle and how the learned forces affect
the whole body motion of a humanoid robot or a robot on a
mobile platform. Our future work, therefore, involves testing
the algorithm in a more complex environment, minimization
of interaction forces during the learning and application of
the proposed framework to the humanoid robot Talos.
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