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Let us look at an extension of Forward Euler:

e We start by making a prediction step using forward Euler:

prediction: dx, = f(x,t,) (Wwe will now omit /dt in dx/dt)
X = X+ h - dx

e Using x?, we make a second guess of dx/dt and finally make a correction
step, combining both guesses.

correction: dxP,q = F(XPy, 1, tth)
X1 = X+ h/2 - (dx, +dxPy,y)

e This method is known as Heun‘s method.

¢ Itinvolves two evaluations of f() but it is second order accurate.
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(dx, + dxP,,4)/2
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Why is this method second order accurate?
e Letus develop a 2" order Taylor-Approximation for f().
Xio1 = X + h - f(x, ) + h?/2 - df(x,,t,)/dt + O(h3)
X1 = X+ h - f(x,t) + h?/2 - (9f(x,,t,)/0x- dx,/dt + Of(x,,t,)/ dt) + O(h®)

Xy = X+ - flxg ) + h?/2 - (0f(x,, t,)/0x- f(x,,t,) + Of(x,,t,)/ Ot) + O(h?)
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Heun: Accuracy m - 4%
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Why is this method second order accurate?
e If we reformulate Heun just in terms of x,, x,,, and f() we get:
Xior = Xy + h/2 - (£(x + hf(xty) te+h) + fxt) )

¢ We now express f(x, + h-f(x,t,) ,t,+h) as linear 2D-Taylor Approximation of f(x,t)
around f(x,t,):

f(x+ h-f(x, )t +h) = f(x,t) + h-f(x,,t)-0f(x,,t)/0x +h-0f(x,t,)/ ot

e Plugging into the original equation yields:
Xiw1 = Xy + 1/2 - (F(x,, 1) + h- F(X,,t,)-0f(X,, t,)/0x + h-0f(x,,t,)/ Ot + f(x,,t,) )
Xipr = X + - f(x, 1) + h?2/2 - (9f(x,,t,)/0x- f(x,,t,) + Of(x,,t)/ Ot)

e Thisis identical to the 2" order Taylor approximation!
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Is Heun the only 2" order Method with two evaluations of f()?

e Let us generalize this procedure by introducing coefficients a and B:

prediction: dx, = f(x,t,)
XP =X+ h - By dx

correction: dxP = f(x?,t, +a,h)
Xiwy = Xy + h - (Byrdxy + B, dx”)

e The coefficients are typically arranged in the Butcher tableau

0 0 0
1 1 0
1 (05 05

e On theright, you see the Butcher tableau of Heun.
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¢ If we repeat the analysis for the Heun formula with the generalized
coefficients, we get:

Xir1 = Xy
+h-(By+B) f(xk/tk)
+h2/2 - (2 B,1B,0f(x, 1) /0 (X, ty) + 2 o, B,, Of(x,,,)/ Ot)

e Inorder to be 2" order accurate, the following equations must hold:

By +Bp=1
1182 =1
2a,B5,=1

e This is evidently true for Heun,
but there is a second solution.
The midpoint rule:
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Heun contains 2 sub-steps. If we allow n steps, we get more coefficients and
can derive even higher-order methods:

step O: dxP = f(x,,t,)

step i: XPi= X+ h - (B dx™ + BdxPt + ..+ B dxPi-Y)
dxP = f(xP,t, + ah)

final stepn:  Xyq =X+ h - (B dxP0 + B ,dxPt + ..+ B dxP(D)
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The best known algorithm from this class of numerical integration methods
is the 4th-order accurate Runge-Kutta (RK4) algorithm characterized by
the following Butcher tableau:

1/2| 1/2 0 0 0

1/2 0 1/2 0 0

1 1/6 1/3 1/3 1/6
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dx"0/6 + dx"1/3 + dxP2/3 + dx*3/6

analytical

/ solution

& LORY I Y
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Over time, many RK methods have been developed:

1

Euler 1768 1
Runge 1895 4 4
Heun 1900 2 2
Kutta 1901 5 6
Huta 1956 6 8
Shanks 1966 7 9
Curtis 1970 8 11

e The number of non-linear equations grows rapidly with the order of the methods.
Already for RK methods of order 5, there no longer exists a solution in 5 stages.
More stages must be added in order to increase the number of parameters.

e Inrecent years, a sequence of yet higher-order RK methods were developed
quite rapidly using computer algebra methods (Maple, Mathematica).
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A nth-order method is more precise than a first-order method but it involves also
more function evaluations per integration step. Is it worth its price?

Price per Accuracy for Different FRKs
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What about the stability?

Stability Domains of FRK

{A-h}

im

E;.e{,\ -}
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RK: Stability m + 4~
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What about the stability? Stailiey Domsins of FRK

e nth-order methods in n stages
have the same stability domain.
For orders higher than 5 the
stability domain depends on
the concrete Butcher tableau.

el - b
e Although, higher order methods gain a lot in precision, the stability domain grows
rather modestly.

e For stiff systems, all RK-methods are almost as bad as FE. We are still bound to
use very small step-sizes.

e However, for oscillating systems (with eigenvalues near the imaginary axis), the
situation improves significantly from RK2 on.
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In order to control the step-size, we would like to have an estimate of the local
integration error for each step.

e One way, is to perform the same step twice using two different integration
methods.

e Using their results (x; and x,) we may estimate the relative error €

€l = | X - le / max(lxll, | X, |,6) & is a small fudge value >0

¢ We can now compare €, with the desired tolerance tol,,; and control the step-

size accordingly

rel
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It is not efficient to perform the same step twice. Hence, Fehlberg managed to
integrate an RK4 method into an RK5 method.

e Here is the Butcher Tableau for Runge-Kutte-Fehlberg 4/5:

0 0 0 0 0 0 0
1/4 1/4 0 0 0 0 0
3/8 3/32 9/32 0 0 0 0

12/13 1932/2197  -7200/2197 7296/2197 0 0 0

1 439/216 -8 3680/513 -845/4104 0 0
1/2 -8/27 2 -3544/2565 1859/4104 -11/40 0

X; 25/216 0 1408/2565 2197/4104 -1/5 0

X, 16/135 0 6656/12825  28561/56430 -9/50 2/55

¢ Now the estimation of the local integration error is virtually for free.
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Step-Size Control m - %%
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Using &, =%, - X,| / max(|x,|,|x,|,8), we can develop a step-size control for RKF 4/5

e x,is a 4™ order approximation whereas x,is a 5" order approximation

¢ Hence the relative error €, is proportional to h®

e Itistherefore meaningful to state:
€rer [10rey = (Mot / Poc)®

> Prew = 3/ t0lei/Eref g

* Inthis way, if the error is too large, the next step is reduced, and if the error is
unnecessarily small, the next step is increased.
e This is an optimistic strategy since steps are never repeated, even if the error is

excessively large
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e So far, every integration step was independent from its preceding integrations
steps.

e At each step, we have performed a single-step (with some sub-steps). The
information contained in the previous integration steps has been discarded.

e Hence the RK methods are called single-step methods.

e But there are also multi-step methods....
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Multi-Step m - 4%
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e The idea behind every multi-step method is to generate a higher-order method
by a polynomial approximation of the previous steps.

e The figure below illustrates this principle:

polynomial

/ approximation

analytical

............. / solution
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e Let p() be the polynomial that approximates the last n-1 steps: X1, X, .- Xy 41

e We can then generate a nt'-order method by solving the following equation for

Xii1®
F(Xe1,tier) = AP(Kppq, tur) /0t

e Hence this represents an implicit method (like BE).

polynomial

/ approximation
plx;t)

analytical

........... / solution
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e Letp() be the polynomial that approximates the last n-1 steps: Xy,q, X - Xicni1 o If we perform the integration with a fixed step-size, all points for the polynomial
approximation are equally-distant spaced in time. This enables the usage of
e We can then generate a nt"-order method by solving the following equation for Newton-Gregory polynomials for p().

Xie1?
e dp(X,1,te)/dt can be expressed as weighted sum of x,:
F(Xp1tien) = AP(Xe1, s )/dit

. - . d Aa)/dt-h = + ot
o Hence this represents an implicit method (like BE). PXes i)/ AyXiepy + X ArXicns

e Remark: Since this is an implicit method, it can also be directly applied to the * This leads to the famous BDF methods:
implicit DAE form 0 = F(dx/dt,x,u,t):
a, a, ay a, as ag
0 = F(dP(Xeyq,tien)/dt, X1, U tisr) BDF 1 1 -1
) ) BDF 2 3/2 2 1/2

These kind of solvers can also be applied on systems that have not undergone

index-reduction (but it is not necessarily an efficient way to do so..) BDF 3 11/6 -3 3/2 -1/3
BDF 4 25/12 -4 3 -4/3 1/4
BDF 5 137/60 -5 5 -10/3 5/4 -1/5
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What about the stability? What about the stability? S e
Stability Damains of BDF
| e BDF 1is Backward Euler
e BDF 2 is still maintains the |
4 analytical stability :
i e The region of unstability grows
5 5 i significantly with the number of the order.
LOF . N Y ; i
£ 1 e From BDF 3 on, the unstable region overlaps the imaginary axis.
i | I e Hence the higher order BDF methods (from 5 on) behave strangely for oscillatory
systems.
. e Thanks to their suitability for the simulation of stiff systems and due to their
4 * L w ¥ = simplicity, the BDF algorithms are among the most widely used numerical ODE
Re{X - b} solvers for the simulation of dynamic systems.
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Multi-Step: Startup
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There are some extra problems involved with multi-step methods in general
One of them is the startup problem.

We simply assumed, that there for an nt"-order method, there are n-1 past values
available. At start, this assumption is obviously violated.

Essentially, there are two solutions:

—  Work yourself up: Start with BDF 1, then continue with BDF 2, BDF 3 and so on...
Unfortunately, the usage of BDF 1 may enforce small step-sizes initially.

— Kick-start using a single-step method of the appropriate order.
For instance use 3 steps of RK4 to start BDF 4. However, since RK4 cannot cope with
stiff systems, small step-sizes might again be enforced.

— Most probably the best choice is to use and implicit Runge-Kutta (see later on) method
as Kick-start
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mm - 4%
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Multi-Step: Startup

e The other problem is step-size control.
e We have assumed a fixed step-size so far.

¢ If we want to adapt the step-size, we have to “relocate” our past integration
values X, X, 1, - Xy ns1

polynomial

/ approximation

Xye1 analytical

............... / solution
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Multi-Step: Startup
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This relocation of x,, Xy, ... X,_,; can be performed with linear operations only
and does not involve any loss of precision since the polynomial g() remains
unchanged.

However, the adaption of step-size is relatively costly. Controlling the step-size
for each step is not recommendable. Consequently, a more conservative step-size
has to be chosen so that overhasty changes can be avoided and the same step-
size can be maintained over larger time-spans

polynomial

E / approximation

X1 analytical

/ solution
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So far, we have investigated two major classes of integration methods

Explicit Implicit
Single-Step Runge-Kutta
Multi-Step BDF
(DASSL)
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m - 4%

Robotics and Mechatronics Centre

What about explicit multi-step methods. They would be great for real-

time simulation or?

Adams-Bashforth

mm - 4%
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There are explicit multi-step methods available. There are called, for

instance, Adams-Bashforth (AB).

e Whereas the implicit multi-step
polynomial interpolation, the ex

methods are based on
plicit methods are based on

polynomial extrapolation. This is potentially dangerous.

e Itis therefore no surprise, that
AB performs very poorly
with respect to stability.

¢ Indeed, the numerical
stable region shrinks
for higher-order methods

e AB is practically only used
for non-stiff, linear systems.

Stability Domains of AB

Im{A - H}

|
|

Explicit Implicit
Single-Step Runge-Kutta
Multi-Step BDF
(DASSL)
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Wouldn’t implicit single step methods be very suited for the simulation

of stiff systems?

Explicit Implicit
Single-Step Runge-Kutta
Multi-Step Adams-Bashforth BDF
(DASSL)
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Implicit RK
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The classic RK methods enabled an explicit computation since the Butcher

Tableau does not contain entries at

or above the diagonal.

e Here is the Butcher Tableau of 3rd order Radau lla. It requires an implicit

solver.

1/3| 5/12 -1/12
1 3/4 1/4
3/4 1/4

dx = f(x, + 5h/12dx" — h/12dx"* , t, + h/3)
dxP? = f(x, + 3h/4dx™ + h/4dxP*, t, + h)
D Xi,q = X + 30h/4dx™° + h/4dxP!

dxP and dxP! need to be found by an iterative
solver. Hence, Radau lla (3rd order) requires
twice as many iteration variables as BE and a
single step is though (roughly) 23=8 times more
expensive as an BDF step of the same order.
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The classic RK methods enabled an explicit computation since the Butcher
Tableau does not contain entries at or above the diagonal.

e Here is the Butcher Tableau of 3rd order Radau lla. It requires an implicit
solver.

Stability Domains of IRK

1/3| /12 -1/12
1| 3/4 1/a

Rladau IAS

Lobatio HIC(4)

o Implicit RK methods behave e
excellently w.r.t. stability
e However, a step of IRK is
significantly more expensive 2t
than a step of BDF of the
same order. 4
* However, IRK feature a more ™
flexible step-size control and
can compensate for this in o}
highly non-linear or discon- —
tinuous systems

Im{\ - h}
;
i

Re{X - h}
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Overview

So.. this is what we have learned today:

mm - 4%
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Explicit Implicit
Single-Step Runge-Kutta Implicit Runge-Kutta
(Radau lla)
Multi-Step Adams-Bashforth BDF
(DASSL)
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