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Today, we shall look at the problem of dealing with discontinuities in 
modeling and simulation. 

 
• Models from engineering often exhibit discontinuities that 

describe situations such as switching, limiters, dry friction, 
impulses, or similar phenomena. 
 

• The modeling environment must deal with these problems in 
special ways, since they influence strongly the numerical 
behavior of the underlying differential equation solver. 

Motivation 
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What happens if we simply apply one of our ODE-solvers on a 
system with discontinuity? 

 
• The discontinuity occurs in f(x(t),t).  

 
• All ODE-solvers (and their error-estimations) are based on a 

polynomial approximation of f(x(t),t). 
 

• Higher-Order methods (order > 1) even suppose that f(x,t) is 
differentiable multiple times. 
 

Standard ODE-Solvers 
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What happens if we simply apply on of our ODE-solvers on a system 
with discontinuity? 

 
• Polynomials are always continuous and continuously 

differentiable functions. 
 

• Therefore, when the state equations of the system: 
 

   dx/dt = f(x(t), t) 
 

 exhibit a discontinuity, the polynomial extrapolation is a very 
poor approximation of reality. 

 
• Consequently, integration algorithms with a fixed step size 

exhibit a large integration error, whereas integration algorithms 
with a variable step size must reduce the step size dramatically in 
the vicinity of the discontinuity. 

Applying Standard ODE-Solvers 
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• An integration algorithm of variable step size reduces the step 
size at every discontinuity. 

• After passing the discontinuity, the step size is only slowly 
enlarged again, as the integration algorithm cannot distinguish 
between a discontinuity and a point of large local stiffness (with a 
large absolute value of the derivative). 

• The step-size is constantly too small. The integration is inefficient 
at best if not even totally inaccurate. 

  

Applying Standard ODE-Solvers 

h 

t 

Discontinuities 
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• Trying to handle discontinuities implicitly by standard ODE 
solvers is evidently not a good solution. 

• We can avoid the occurring problems if we model the 
discontinuities explicitly. 

• The expression is one way to do this in Modelica: 
 

 f = if x < -w then –a else if x<w then a*x/w else a 

Applying Standard ODE-Solvers 

f 

x 

2*w 

a 

a 
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• This if-statement models a state-event since the occurrence of 
the discontinuity is dependent on the state x. 

• An integration algorithm may now precisely locate the event by 
iterating for the event.  

• For instance, by using the bi-section algorithm: 
 

Applying Standard ODE-Solvers 
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• Bi-section converges slowly. Hence one may prefer the secant 
method or its “safer”-twin: regula-falsi. 

• It is possible to combine the secant method and bi-section 
 Dekker’s methods, Brent’s method. 
 

Applying Standard ODE-Solvers 
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• The iteration for the event-location is thereby performed on the 
current model equation (here f = a*x/w). 

• The event itself changes then the model equation  
(here to f = a) 
 

Applying Standard ODE-Solvers 
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• Sometimes, the event iterations can cause errors in the evalution 
(division by zero, negative roots) 

• Sometimes, the if-statement is used to model continuous 
functions.  

• Hence the noEvent() clause exists: Example:  
f = noEvent(if x > 0 then sqrt(x) else -sqrt(-x)); 

• Here, an event iteration would be both, unnecessary and 
dangerous. Handling this function is now left to step-size control. 
 

Applying Standard ODE-Solvers 

f 

x 
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• If we know the precise location of the event, it is sufficient to 
reduce the size of one single step. 

• After passing the discontinuity we switch the model equation and 
continue with the former step-size. 
 

Applying Standard ODE-Solvers 

h 

t 

Discontinuities 
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• Evidently, this is much better than abusing step-size control for 
the treatment of discontinuities. 

• We can take much larger step-sizes. 
 

Applying Standard ODE-Solvers 

h 

t 

Discontinuities 
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Let us see what we can model with the if-
statement.  

 
• For instance, the model of an electrical diode 

with the following curve. 
 

• Here is one way to model it: 
 

 u = R*i 

 R = if u>0 then R_on else 1/G_off; 
 
 

Modeling a Diode 

Conductance:  
Goff 

Resistance:  
Ron 

i 

u 



© Dirk Zimmer, January 2015, Slide 14 

Robotics and Mechatronics Centre 

+ 

A more compact form is also possible:  

 
 u = if u>0 then R_on*i else i/G_off; 
 

• This is possible because if-expressions are 
non-causal in Dymola. 

• Internally, the if-expressions may be 
translated into: 
 

 u = s*R_on*i + (1-s)*i/G_off; 
 with  

s = 1 if u>0   
s = 0 if u<0 
 

• The equation can be solved for u or i. 
 
 

Modeling a Diode 

Conductance:  
Goff 

Resistance:  
Ron 

i 

u 
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Unfortunately, a truly ideal diode cannot be 
modeled in this way. 
 

• Ron and Goff are 0 for an ideal diode. 
 

• The model would be singular in either case. 
 

• We need a different approach. Let us model 
the diode by a parameterized curve with the 
curve parameter s. 
 
Blocking diode u=s with s < 0 

 Open diode i=s with s > 0 
 

 
 

Modeling an Ideal Diode 

s  -∞ 

i 

u 

s  ∞ 

s = 0 
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Here are the corresponding model equations 
 

 u = if s>0 then 0 else s; 
 i = if s>0 then s else 0; 

 
• These are 2 equations over 3 variables. 

Which are the 2 unknowns? 
 If u is known the model is singular for u=0. 
 If i is known the model is singular for i=0. 
 Only if s is known the model will be regular. 
  
• But s depends itself on u and i. Hence the 

model needs to be placed in an algebraic 
loop and s must be chosen as tearing 
variable of this loop. (Fortunately, Dymola 
has an in-built heuristics for this…) 
 

 
 

Modeling an Ideal Diode 

s  -∞ 
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s = 0 
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Here is an appropriate example: the 
halfway-rectifier. 
 

• The ideal diode D and the resistor 
R1 form an algebraic loop that 
determines the voltage drop 
between source and capacitance. 
 

• The tearing-variable is the curve-
parameter s. 
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But if we modify this circuit slightly we 

run into a serious problem. 
 

• We add an inductance in front of 
the diode. 
 

• Since the natural state-variable of 
the inductance is the current, the 
causality of the resistor is fixed and 
the diode is not part of algebraic 
loop anymore. 
 

• The simulation fails. 
 

• Let us look closer at this problem. 
 
 
 
 

Halfway-Rect. w. Line-Inductance 

The inductance L contains the 
differential equation: 

 di/dt*L = u 

 

Hence, i is supposed to be known 
and the causality of the diode is 
fixed. 
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The two circuits below represent the two different states of the diode. (either 
fully open or fully blocking) 
 

  Diode: Open    Diode: Closed 
 
 
 
 
 
 

 States (C.v, L.i); Index: 0  States (C.v); Index: 1 
 

• The two different states of the diode lead to two different system with 
different state variables and different perturbation index. 

• A severe structural change has been caused by a seemingly harmless 
equation.  

• Dymola is currently unable to handle such variable-structure systems. 
 
 

Halfway-Rect. w. Line-Inductance 
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So what can we do? 
   
• One solution is to use a non-ideal diode and to avoid the structural change 

at all. However this implements an artificial stiffness into the system that 
may be unwanted. 
 

• Fortunately, there is another trick: Inline Integration. 
 
• Inline integration means that we inline the time-discrete equation of the 

integration algorithm into the model equations. 
 

• To this end, we need to replace the corresponding differential equations. 
 

Inline-Integration 
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Let us use inline integration for the halfway rectifier with line inductance. 
   
• We want to inline Backward Euler (BE or BDF1) into the model of the 

inductance. 
 

• Hence the differential equation of the inductance: 
 

  di/dt * L = u 
 
• gets replaced by: 

 
  (it – it-h)/h*L = ut 

 or 
  it = it-h + ut/L*h 
 

 with it or ut as potential unknowns 

 
  

Inline-Integration: Example 
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What is the advantage of inline-integration? 
   
• By using inline-integration with BE, we have transformed the equation of 

the inductance into: 
 

  it = it-h + ut/L*h 
 

• This equation is structurally equivalent to a resistor equation. It can be 
solved for it as well as for ut. Hence it can be also part of an algebraic loop. 
 

• For the halfway-rectifier with line-inductance this means that the 
equations of the inductance L, the resistor R1, and the Diode D form one 
algebraic loop using the curve parameter s as tearing variable. 
 

• This kind of inline-integration is also not supported by Dymola. 
Dymola may perform inline-integration but after the differential index-
reduction has taken place. Hence this trick does currently not work in 
Dymola. 
 

 
  

Inline-Integration: Example 
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So far, we have only looked at events that could be modeled by if-expressions. 
However, also multi-valued functions do frequently occur in engineering systems. 

 
• One example is a function for a hysteretic controller (As used, for instance, in a 

refrigerator or many other devices that require a binary control). 
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To model such functions, the when-statement has been introduced in Modelica. 

 

 when x > 10 then 
 y = -10 
end when; 

   
• The when statement becomes active exactly when its condition becomes true. 

 
• The equation is rather an assignment: The unknown must be placed on the left. 

 
• The equation is only active for this particular time-instance. Right after, it is 

deactivated again. 
 

• The value of the unknown is held constant until the next activation of the same 
when-statement. 

Multi-Valued Functions 



© Dirk Zimmer, January 2015, Slide 25 

Robotics and Mechatronics Centre 

+ 

Hence, the following code seems appropriate to model the hysteresis. 

  

 when x>1 then 
 y = 1; 
end when; 

 when x<-1 then 
 y = -1; 
end when; 
 

 
 
  

 
 
 

 
 
 
 
 
 
 
 
 

Multi-Valued Functions 
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Hence, the following code seems appropriate to model the hysteresis. 

  

 when x>1 then 
 y = 1; 
end when; 

 when x<-1 then 
 y = -1; 
end when; 
 

 
• However,  this is illegal in Modelica since the variable y is determined in two 

distinct when-statements. In order to avoid problems with simultaneous events, 
this is not allowed. 
 

• Of course, these two events are mutually exclusive, but Dymola does not know 
this and it is impossible in general to derive this automatically. 
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Here is an alternative formulation: 

  

 when x>1 or x<-1 then 
 y = if x>0 then 1 else -1; 
end when; 

 

 
  
• This is perfectly legal. We have simply merged the two events into a single when-

statement. 
 

• By doing so, we have created another problem. Given a large step-size we might 
jump directly from x=-1 to x=1. In this case, no event is triggered at all. 
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Here is an alternative formulation: 
  
 when {x>1, x< -1} then 

 y = if x>0 then 1 else -1; 
end when; 

 
 
 
  
• This is perfectly legal. We have simply merged the two events into a single when-

statement. 
 

• By doing so, we have created another problem. Given a large step-size we might 
jump directly from x=-1 to x=1. In this case, no event is triggered at all. 
 

• To cope with this problem, Modelica enables to state a condition-vector. 
Now, we are fine. 
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In the Modelica Standard Library, the hysteresis is modeled even differently: 
 y =  if x > 1 or (pre(y>0) and (x>=-1)) then 1 else -1; 
 
• The operator pre(…) can be used in order to access the value of a variable 

just right before the event. 
• Using this operator, we can formulate multi-valued functions without the 

use of when-statements. 
• In fact, the statement: 

 when g(…) then 
     y = f(…); 
 end when; 

 is internally transformed to…. 
  if g(…) and not pre(g(…)) then 
     y = f(…);  
  else   
     y = pre(y); 
  end if; 

 

Multi-Valued Functions 
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So far, we have only looked at discrete changes in the function f(x(t),t) 
 

 dx/dt = f(x(t),u,t)   
  
• But there are also cases where the actual state is changing discretely (e.g. 

mechanical collisions/impulses) . Here dx/dt becomes of infinite value. 
What shall we do? 

 
• This problem corresponds to the re-initialization of the system. 
 
• In current Modelica, this is only weakly supported by the function 

reinit(state, newValue). 
 

• Let us look at an example: The bouncing ball. 
 

Discrete State Changes 
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Let us model a bouncing ball that is being dropped from an initial height and 
is bouncing on a table. 
 

 

Bouncing Ball 
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Let us model a bouncing ball that is 
being dropped from an initial 
height and is bouncing on a table. 
 

• The motion is described by the 
variables x, v, and a.  
 

• The elasticity of the impulse is 
determined by the coefficient μ. 
 

• The reinit command is used in a 
when-clause.  
 

• The pre(…) operator is used to 
access the prior value of v in 
order to compute the new 
velocity. 

 

Initializing the Revolute Joint 

model BouncingBall 
 
  Real x; 
  Real v; 
  Real a; 
 
  parameter Real mu = 0.85; 
 
 
initial equation  
  v = 0; 
  x = 1; 
 
equation  
  v = der(x); 
  a = der(v); 
  a = -9.81; 
 
  when x<0 then 
    reinit(v,-mu*pre(v)); 
  end when; 
 
end BouncingBall; 
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This looks fine. But what happens if we simulate for longer time periods? 
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OOOPS!?! This is a common problem among many simulators. The 
increasingly smaller bounces lead to a failure in the event detection. 
Modeling a resting state by events is evidently not a good idea.  
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Let us combine what we have learned today by modeling an ideal model for 
dry-friction. 
  

• For the characteristic curve, we have used so far a regularization. 
Here is a piecewise linear regularization: 

 

Dry Friction Revisited 
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Let us combine what we have learned today by modeling an ideal model for 
dry-friction. 
  

• In the ideal model, this is a multi-valued function. 
 

Dry Friction Revisited 
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Let us combine what we have learned today by modeling an ideal model for 
dry-friction. 
  

• In the ideal model, this is a multi-valued function. 
• The function contains several modes: 

 
 

Modeling Dry Friction 

Stiction 
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Backward 

StartForward 

StartBackward 
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We need to carefully model the transitions between these modes. 
  

• This can be prepared by a mode-transition diagram: 
 

 

Dry Friction: Mode-Transitions 
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Let us setup the model: 
 

• We use the standard translational 
interface and derive the velocity 
and acceleration. 
 

• Two parameters values describe 
the friction characteristics. 
 

• The modes are represented by a 
set of Boolean variables. 

 

Modeling Dry Friction 

model DryFriction 
  parameter SI.Force S = 10; 
  parameter SI.Force R = 8; 
  Flange_a flange_a; 
  SI.Velocity v; 
  SI.Acceleration a; 
  SI.Force fR; 
 
  Boolean Stiction; 
  Boolean StartForw; 
  Boolean Forward; 
  Boolean StartBack; 
  Boolean Backward; 
 
 
equation  
  v = der(flange_a.s); 
  a = der(v); 
  […]  
 
 
 
 
 
end DryFriction; 
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Let us setup the model: 
 

• The friction force (flange_a.f) is 
now dependent on the current 
mode. 
 

Modeling Dry Friction 

model DryFriction 
  parameter SI.Force S = 10; 
  parameter SI.Force R = 8; 
  Flange_a flange_a; 
  SI.Force fR; 
  […] 
 
equation  
  […]  
 
  flange_a.f =  
    if Forward then R  
    else if Backward then - R  
    else if StartForw then R  
    else if StartBack then -R  
    else fR; 
 
 
  0 =  
   if Stiction or initial() then a  
   else fR; 
 
 
end DryFriction; 
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Let us setup the model: 
 

• The friction force (flange_a.f) is 
now dependent on the current 
mode. 

• The internal operator 
initial() becomes true just 
at the moment of initialization. 
Otherwise, it is false. 

• Initially or at Stiction, the 
acceleration is set to zero and the 
friction force fR is free. 

• The conditional constraint a=0 
should actually be v=0 at least or 
s=const, but this would cause a 
structural change and cannot be 
handled by Modelica/Dymola. 

Modeling Dry Friction 

model DryFriction 
  parameter SI.Force S = 10; 
  parameter SI.Force R = 8; 
  Flange_a flange_a; 
  SI.Force fR; 
  […] 
 
equation  
  […]  
 
  flange_a.f =  
    if Forward then R  
    else if Backward then - R  
    else if StartForw then R  
    else if StartBack then -R  
    else fR; 
 
 
  0 =  
   if Stiction or initial() then a  
   else fR; 
 
 
end DryFriction; 
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Let us setup the model: 
 

• Now we have to model the 
mode-transitions according to 
the diagram. 
 

• We can use the pre() operator for 
this purpose. 
 

• All states must be exclusive. 

Modeling Dry Friction 

model DryFriction 
  parameter SI.Force S = 10; 
  parameter SI.Force R = 8; 
  Flange_a flange_a; 
  SI.Force fR; 
  […] 
 
equation  
  […]  
  Forward = initial() and v > 0 or 
            pre(StartForw) and v > 0 or 
            pre(Forward) and not v <= 0; 
  Backward = initial() and v < 0 or 
             pre(StartBack) and v < 0 or 
             pre(Backward) and not v >= 0; 
  StartForw = pre(Stiction) and fR > S or 
              pre(StartForw) and not  
              (v>0 or a<=0 and not v>0); 
  StartBack = pre(Stiction) and fR<- S or 
              pre(StartBack) and not  
              (v<0 or a>=0 and not v<0); 
  Stiction = not (Forward or Backward or 
                  StartForw or StartBack); 
end DryFriction; 
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Let us setup the model: 
 

• Finally, there is a last issue: 
 

• When the velocity crosses zero 
and stiction is enforced, we need 
to set the velocity explicitly to 
zero. 
 

• To this end, we use the reinit()-
command. Hence v must be a 
state-variable. 

Modeling Dry Friction 

model DryFriction 
  parameter SI.Force S = 10; 
  parameter SI.Force R = 8; 
  Flange_a flange_a; 
   
  SI.Velocity v( 
    stateSelect=StateSelect.always 
  ); 
 
  […] 
 
 
 
equation  
 
  […]  
 
  when Stiction and not initial() then 
   reinit(v,0); 
  end when; 
 
 
 
end DryFriction; 
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Let us test our dry-friction model: 
  

• The mass (5kg) has an initial speed of 5m/s 
• The (negative) force is ramped up from 0 to 15N 

 
 

Simulating Dry Friction 
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Here is the simulation result: 
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This system is more fun. 
  

• Mass1 (5kg) is initially at rest. 
• Mass2 (100kg) starts with v=1m/s. 

 
 

Simulating Dry Friction 
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Here is the simulation result: 
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