
Virtual Physics
Equation-Based Modeling

Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre

TUM, January 13, 2015

Modeling and Simulation of Discontinuous Systems

0.0 2.5 5.0
-1.0

-0.5

0.0

0.5

1.0
x

© Dirk Zimmer, January 2015, Slide 2

Robotics and Mechatronics Centre

+

Today, we shall look at the problem of dealing with discontinuities in
modeling and simulation.

• Models from engineering often exhibit discontinuities that

describe situations such as switching, limiters, dry friction,
impulses, or similar phenomena.

• The modeling environment must deal with these problems in
special ways, since they influence strongly the numerical
behavior of the underlying differential equation solver.

Motivation

© Dirk Zimmer, January 2015, Slide 3

Robotics and Mechatronics Centre

+

What happens if we simply apply one of our ODE-solvers on a
system with discontinuity?

• The discontinuity occurs in f(x(t),t).

• All ODE-solvers (and their error-estimations) are based on a

polynomial approximation of f(x(t),t).

• Higher-Order methods (order > 1) even suppose that f(x,t) is
differentiable multiple times.

Standard ODE-Solvers

© Dirk Zimmer, January 2015, Slide 4

Robotics and Mechatronics Centre

+

What happens if we simply apply on of our ODE-solvers on a system
with discontinuity?

• Polynomials are always continuous and continuously

differentiable functions.

• Therefore, when the state equations of the system:

 dx/dt = f(x(t), t)

 exhibit a discontinuity, the polynomial extrapolation is a very
poor approximation of reality.

• Consequently, integration algorithms with a fixed step size

exhibit a large integration error, whereas integration algorithms
with a variable step size must reduce the step size dramatically in
the vicinity of the discontinuity.

Applying Standard ODE-Solvers

© Dirk Zimmer, January 2015, Slide 5

Robotics and Mechatronics Centre

+

• An integration algorithm of variable step size reduces the step
size at every discontinuity.

• After passing the discontinuity, the step size is only slowly
enlarged again, as the integration algorithm cannot distinguish
between a discontinuity and a point of large local stiffness (with a
large absolute value of the derivative).

• The step-size is constantly too small. The integration is inefficient
at best if not even totally inaccurate.

Applying Standard ODE-Solvers

h

t

Discontinuities

© Dirk Zimmer, January 2015, Slide 6

Robotics and Mechatronics Centre

+

• Trying to handle discontinuities implicitly by standard ODE
solvers is evidently not a good solution.

• We can avoid the occurring problems if we model the
discontinuities explicitly.

• The expression is one way to do this in Modelica:

 f = if x < -w then –a else if x<w then a*x/w else a

Applying Standard ODE-Solvers

f

x

2*w

a

a

© Dirk Zimmer, January 2015, Slide 7

Robotics and Mechatronics Centre

+

• This if-statement models a state-event since the occurrence of
the discontinuity is dependent on the state x.

• An integration algorithm may now precisely locate the event by
iterating for the event.

• For instance, by using the bi-section algorithm:

Applying Standard ODE-Solvers

f

x

1

2

3
4

5 6

© Dirk Zimmer, January 2015, Slide 8

Robotics and Mechatronics Centre

+

• Bi-section converges slowly. Hence one may prefer the secant
method or its “safer”-twin: regula-falsi.

• It is possible to combine the secant method and bi-section
 Dekker’s methods, Brent’s method.

Applying Standard ODE-Solvers

f

x

1

2

3
4

5 6

© Dirk Zimmer, January 2015, Slide 9

Robotics and Mechatronics Centre

+

• The iteration for the event-location is thereby performed on the
current model equation (here f = a*x/w).

• The event itself changes then the model equation
(here to f = a)

Applying Standard ODE-Solvers

f

x

1

2

3
4

5 6

© Dirk Zimmer, January 2015, Slide 10

Robotics and Mechatronics Centre

+

• Sometimes, the event iterations can cause errors in the evalution
(division by zero, negative roots)

• Sometimes, the if-statement is used to model continuous
functions.

• Hence the noEvent() clause exists: Example:
f = noEvent(if x > 0 then sqrt(x) else -sqrt(-x));

• Here, an event iteration would be both, unnecessary and
dangerous. Handling this function is now left to step-size control.

Applying Standard ODE-Solvers

f

x

© Dirk Zimmer, January 2015, Slide 11

Robotics and Mechatronics Centre

+

• If we know the precise location of the event, it is sufficient to
reduce the size of one single step.

• After passing the discontinuity we switch the model equation and
continue with the former step-size.

Applying Standard ODE-Solvers

h

t

Discontinuities

© Dirk Zimmer, January 2015, Slide 12

Robotics and Mechatronics Centre

+

• Evidently, this is much better than abusing step-size control for
the treatment of discontinuities.

• We can take much larger step-sizes.

Applying Standard ODE-Solvers

h

t

Discontinuities

© Dirk Zimmer, January 2015, Slide 13

Robotics and Mechatronics Centre

+

Let us see what we can model with the if-
statement.

• For instance, the model of an electrical diode

with the following curve.

• Here is one way to model it:

 u = R*i

 R = if u>0 then R_on else 1/G_off;

Modeling a Diode

Conductance:
Goff

Resistance:
Ron

i

u

© Dirk Zimmer, January 2015, Slide 14

Robotics and Mechatronics Centre

+

A more compact form is also possible:

 u = if u>0 then R_on*i else i/G_off;

• This is possible because if-expressions are
non-causal in Dymola.

• Internally, the if-expressions may be
translated into:

 u = s*R_on*i + (1-s)*i/G_off;
 with

s = 1 if u>0
s = 0 if u<0

• The equation can be solved for u or i.

Modeling a Diode

Conductance:
Goff

Resistance:
Ron

i

u

© Dirk Zimmer, January 2015, Slide 15

Robotics and Mechatronics Centre

+

Unfortunately, a truly ideal diode cannot be
modeled in this way.

• Ron and Goff are 0 for an ideal diode.

• The model would be singular in either case.

• We need a different approach. Let us model
the diode by a parameterized curve with the
curve parameter s.

Blocking diode u=s with s < 0

 Open diode i=s with s > 0

Modeling an Ideal Diode

s  -∞

i

u

s  ∞

s = 0

© Dirk Zimmer, January 2015, Slide 16

Robotics and Mechatronics Centre

+

Here are the corresponding model equations

 u = if s>0 then 0 else s;
 i = if s>0 then s else 0;

• These are 2 equations over 3 variables.

Which are the 2 unknowns?
 If u is known the model is singular for u=0.
 If i is known the model is singular for i=0.
 Only if s is known the model will be regular.

• But s depends itself on u and i. Hence the

model needs to be placed in an algebraic
loop and s must be chosen as tearing
variable of this loop. (Fortunately, Dymola
has an in-built heuristics for this…)

Modeling an Ideal Diode

s  -∞

i

u

s  ∞

s = 0

© Dirk Zimmer, January 2015, Slide 17

Robotics and Mechatronics Centre

+

Here is an appropriate example: the
halfway-rectifier.

• The ideal diode D and the resistor
R1 form an algebraic loop that
determines the voltage drop
between source and capacitance.

• The tearing-variable is the curve-
parameter s.

Halfway-Rectifier

V0

+
-

R=15

R1

R
=50

R
2

G

C
=0.001

C

D

0.0 0.1 0.2

0

2

4

6
capacitor.v

© Dirk Zimmer, January 2015, Slide 18

Robotics and Mechatronics Centre

+

V0

+
-

R=15

R1

R
=50

R
2

G

C
=0.001

C

D

L=0.01

I
But if we modify this circuit slightly we

run into a serious problem.

• We add an inductance in front of
the diode.

• Since the natural state-variable of
the inductance is the current, the
causality of the resistor is fixed and
the diode is not part of algebraic
loop anymore.

• The simulation fails.

• Let us look closer at this problem.

Halfway-Rect. w. Line-Inductance

The inductance L contains the
differential equation:

 di/dt*L = u

Hence, i is supposed to be known
and the causality of the diode is
fixed.

© Dirk Zimmer, January 2015, Slide 19

Robotics and Mechatronics Centre

+

The two circuits below represent the two different states of the diode. (either
fully open or fully blocking)

 Diode: Open Diode: Closed

 States (C.v, L.i); Index: 0 States (C.v); Index: 1

• The two different states of the diode lead to two different system with
different state variables and different perturbation index.

• A severe structural change has been caused by a seemingly harmless
equation.

• Dymola is currently unable to handle such variable-structure systems.

Halfway-Rect. w. Line-Inductance

V0

+
-

R=15

R1

R
=50

R
2

G

C
=0.001

C

L=0.01

I

V0

+
-

R=15

R1

R
=50

R
2

G

C
=0.001

C

L=0.01

L
I0=0

© Dirk Zimmer, January 2015, Slide 20

Robotics and Mechatronics Centre

+

So what can we do?

• One solution is to use a non-ideal diode and to avoid the structural change

at all. However this implements an artificial stiffness into the system that
may be unwanted.

• Fortunately, there is another trick: Inline Integration.

• Inline integration means that we inline the time-discrete equation of the

integration algorithm into the model equations.

• To this end, we need to replace the corresponding differential equations.

Inline-Integration

© Dirk Zimmer, January 2015, Slide 21

Robotics and Mechatronics Centre

+

Let us use inline integration for the halfway rectifier with line inductance.

• We want to inline Backward Euler (BE or BDF1) into the model of the

inductance.

• Hence the differential equation of the inductance:

 di/dt * L = u

• gets replaced by:

 (it – it-h)/h*L = ut

 or
 it = it-h + ut/L*h

 with it or ut as potential unknowns

Inline-Integration: Example

© Dirk Zimmer, January 2015, Slide 22

Robotics and Mechatronics Centre

+

What is the advantage of inline-integration?

• By using inline-integration with BE, we have transformed the equation of

the inductance into:

 it = it-h + ut/L*h

• This equation is structurally equivalent to a resistor equation. It can be
solved for it as well as for ut. Hence it can be also part of an algebraic loop.

• For the halfway-rectifier with line-inductance this means that the
equations of the inductance L, the resistor R1, and the Diode D form one
algebraic loop using the curve parameter s as tearing variable.

• This kind of inline-integration is also not supported by Dymola.
Dymola may perform inline-integration but after the differential index-
reduction has taken place. Hence this trick does currently not work in
Dymola.

Inline-Integration: Example

© Dirk Zimmer, January 2015, Slide 23

Robotics and Mechatronics Centre

+

So far, we have only looked at events that could be modeled by if-expressions.
However, also multi-valued functions do frequently occur in engineering systems.

• One example is a function for a hysteretic controller (As used, for instance, in a

refrigerator or many other devices that require a binary control).

Multi-Valued Functions

x

f

1

1

-1

-1

© Dirk Zimmer, January 2015, Slide 24

Robotics and Mechatronics Centre

+

To model such functions, the when-statement has been introduced in Modelica.

 when x > 10 then
 y = -10
end when;

• The when statement becomes active exactly when its condition becomes true.

• The equation is rather an assignment: The unknown must be placed on the left.

• The equation is only active for this particular time-instance. Right after, it is

deactivated again.

• The value of the unknown is held constant until the next activation of the same
when-statement.

Multi-Valued Functions

© Dirk Zimmer, January 2015, Slide 25

Robotics and Mechatronics Centre

+

Hence, the following code seems appropriate to model the hysteresis.

 when x>1 then
 y = 1;
end when;

 when x<-1 then
 y = -1;
end when;

Multi-Valued Functions

x

y

1

1
-1

-1

© Dirk Zimmer, January 2015, Slide 26

Robotics and Mechatronics Centre

+

Hence, the following code seems appropriate to model the hysteresis.

 when x>1 then
 y = 1;
end when;

 when x<-1 then
 y = -1;
end when;

• However, this is illegal in Modelica since the variable y is determined in two

distinct when-statements. In order to avoid problems with simultaneous events,
this is not allowed.

• Of course, these two events are mutually exclusive, but Dymola does not know
this and it is impossible in general to derive this automatically.

Multi-Valued Functions

x

y

1

1
-1

-1

© Dirk Zimmer, January 2015, Slide 27

Robotics and Mechatronics Centre

+

Here is an alternative formulation:

 when x>1 or x<-1 then
 y = if x>0 then 1 else -1;
end when;

• This is perfectly legal. We have simply merged the two events into a single when-

statement.

• By doing so, we have created another problem. Given a large step-size we might
jump directly from x=-1 to x=1. In this case, no event is triggered at all.

Multi-Valued Functions

x

y

1

1
-1

-1

© Dirk Zimmer, January 2015, Slide 28

Robotics and Mechatronics Centre

+

Here is an alternative formulation:

 when {x>1, x< -1} then

 y = if x>0 then 1 else -1;
end when;

• This is perfectly legal. We have simply merged the two events into a single when-

statement.

• By doing so, we have created another problem. Given a large step-size we might
jump directly from x=-1 to x=1. In this case, no event is triggered at all.

• To cope with this problem, Modelica enables to state a condition-vector.
Now, we are fine.

Multi-Valued Functions

x

y

1

1
-1

-1

© Dirk Zimmer, January 2015, Slide 29

Robotics and Mechatronics Centre

+

In the Modelica Standard Library, the hysteresis is modeled even differently:
 y = if x > 1 or (pre(y>0) and (x>=-1)) then 1 else -1;

• The operator pre(…) can be used in order to access the value of a variable

just right before the event.
• Using this operator, we can formulate multi-valued functions without the

use of when-statements.
• In fact, the statement:

 when g(…) then
 y = f(…);
 end when;

 is internally transformed to….
 if g(…) and not pre(g(…)) then
 y = f(…);
 else
 y = pre(y);
 end if;

Multi-Valued Functions

© Dirk Zimmer, January 2015, Slide 30

Robotics and Mechatronics Centre

+

So far, we have only looked at discrete changes in the function f(x(t),t)

 dx/dt = f(x(t),u,t)

• But there are also cases where the actual state is changing discretely (e.g.

mechanical collisions/impulses) . Here dx/dt becomes of infinite value.
What shall we do?

• This problem corresponds to the re-initialization of the system.

• In current Modelica, this is only weakly supported by the function

reinit(state, newValue).

• Let us look at an example: The bouncing ball.

Discrete State Changes

© Dirk Zimmer, January 2015, Slide 31

Robotics and Mechatronics Centre

+

Let us model a bouncing ball that is being dropped from an initial height and
is bouncing on a table.

Bouncing Ball

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
x

© Dirk Zimmer, January 2015, Slide 32

Robotics and Mechatronics Centre

+

Let us model a bouncing ball that is
being dropped from an initial
height and is bouncing on a table.

• The motion is described by the
variables x, v, and a.

• The elasticity of the impulse is
determined by the coefficient μ.

• The reinit command is used in a
when-clause.

• The pre(…) operator is used to
access the prior value of v in
order to compute the new
velocity.

Initializing the Revolute Joint

model BouncingBall

 Real x;
 Real v;
 Real a;

 parameter Real mu = 0.85;

initial equation
 v = 0;
 x = 1;

equation
 v = der(x);
 a = der(v);
 a = -9.81;

 when x<0 then
 reinit(v,-mu*pre(v));
 end when;

end BouncingBall;

© Dirk Zimmer, January 2015, Slide 33

Robotics and Mechatronics Centre

+

This looks fine. But what happens if we simulate for longer time periods?

Bouncing Ball

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
x

© Dirk Zimmer, January 2015, Slide 34

Robotics and Mechatronics Centre

+

OOOPS!?! This is a common problem among many simulators. The
increasingly smaller bounces lead to a failure in the event detection.
Modeling a resting state by events is evidently not a good idea.

Bouncing Ball

0.0 2.5 5.0
-1.0

-0.5

0.0

0.5

1.0
x

© Dirk Zimmer, January 2015, Slide 35

Robotics and Mechatronics Centre

+

Let us combine what we have learned today by modeling an ideal model for
dry-friction.

• For the characteristic curve, we have used so far a regularization.
Here is a piecewise linear regularization:

Dry Friction Revisited

© Dirk Zimmer, January 2015, Slide 36

Robotics and Mechatronics Centre

+

Let us combine what we have learned today by modeling an ideal model for
dry-friction.

• In the ideal model, this is a multi-valued function.

Dry Friction Revisited

© Dirk Zimmer, January 2015, Slide 37

Robotics and Mechatronics Centre

+

Let us combine what we have learned today by modeling an ideal model for
dry-friction.

• In the ideal model, this is a multi-valued function.
• The function contains several modes:

Modeling Dry Friction

Stiction

Forward

Backward

StartForward

StartBackward

© Dirk Zimmer, January 2015, Slide 38

Robotics and Mechatronics Centre

+

We need to carefully model the transitions between these modes.

• This can be prepared by a mode-transition diagram:

Dry Friction: Mode-Transitions

Stiction

ForwardBackward

StartForwardStartBackward

f<-fStiction

v<0

v>=0 v<=0

f>fStiction

v>0

Start

v=0

v<0 v>0

a>0 and not v<0 a<0 and not v>0

© Dirk Zimmer, January 2015, Slide 39

Robotics and Mechatronics Centre

+

Let us setup the model:

• We use the standard translational
interface and derive the velocity
and acceleration.

• Two parameters values describe
the friction characteristics.

• The modes are represented by a
set of Boolean variables.

Modeling Dry Friction

model DryFriction
 parameter SI.Force S = 10;
 parameter SI.Force R = 8;
 Flange_a flange_a;
 SI.Velocity v;
 SI.Acceleration a;
 SI.Force fR;

 Boolean Stiction;
 Boolean StartForw;
 Boolean Forward;
 Boolean StartBack;
 Boolean Backward;

equation
 v = der(flange_a.s);
 a = der(v);
 […]

end DryFriction;

© Dirk Zimmer, January 2015, Slide 40

Robotics and Mechatronics Centre

+

Let us setup the model:

• The friction force (flange_a.f) is
now dependent on the current
mode.

Modeling Dry Friction

model DryFriction
 parameter SI.Force S = 10;
 parameter SI.Force R = 8;
 Flange_a flange_a;
 SI.Force fR;
 […]

equation
 […]

 flange_a.f =
 if Forward then R
 else if Backward then - R
 else if StartForw then R
 else if StartBack then -R
 else fR;

 0 =
 if Stiction or initial() then a
 else fR;

end DryFriction;

© Dirk Zimmer, January 2015, Slide 41

Robotics and Mechatronics Centre

+

Let us setup the model:

• The friction force (flange_a.f) is
now dependent on the current
mode.

• The internal operator
initial() becomes true just
at the moment of initialization.
Otherwise, it is false.

• Initially or at Stiction, the
acceleration is set to zero and the
friction force fR is free.

• The conditional constraint a=0
should actually be v=0 at least or
s=const, but this would cause a
structural change and cannot be
handled by Modelica/Dymola.

Modeling Dry Friction

model DryFriction
 parameter SI.Force S = 10;
 parameter SI.Force R = 8;
 Flange_a flange_a;
 SI.Force fR;
 […]

equation
 […]

 flange_a.f =
 if Forward then R
 else if Backward then - R
 else if StartForw then R
 else if StartBack then -R
 else fR;

 0 =
 if Stiction or initial() then a
 else fR;

end DryFriction;

© Dirk Zimmer, January 2015, Slide 42

Robotics and Mechatronics Centre

+

Let us setup the model:

• Now we have to model the
mode-transitions according to
the diagram.

• We can use the pre() operator for
this purpose.

• All states must be exclusive.

Modeling Dry Friction

model DryFriction
 parameter SI.Force S = 10;
 parameter SI.Force R = 8;
 Flange_a flange_a;
 SI.Force fR;
 […]

equation
 […]
 Forward = initial() and v > 0 or
 pre(StartForw) and v > 0 or
 pre(Forward) and not v <= 0;
 Backward = initial() and v < 0 or
 pre(StartBack) and v < 0 or
 pre(Backward) and not v >= 0;
 StartForw = pre(Stiction) and fR > S or
 pre(StartForw) and not
 (v>0 or a<=0 and not v>0);
 StartBack = pre(Stiction) and fR<- S or
 pre(StartBack) and not
 (v<0 or a>=0 and not v<0);
 Stiction = not (Forward or Backward or
 StartForw or StartBack);
end DryFriction;

© Dirk Zimmer, January 2015, Slide 43

Robotics and Mechatronics Centre

+

Let us setup the model:

• Finally, there is a last issue:

• When the velocity crosses zero
and stiction is enforced, we need
to set the velocity explicitly to
zero.

• To this end, we use the reinit()-
command. Hence v must be a
state-variable.

Modeling Dry Friction

model DryFriction
 parameter SI.Force S = 10;
 parameter SI.Force R = 8;
 Flange_a flange_a;

 SI.Velocity v(
 stateSelect=StateSelect.always
);

 […]

equation

 […]

 when Stiction and not initial() then
 reinit(v,0);
 end when;

end DryFriction;

© Dirk Zimmer, January 2015, Slide 44

Robotics and Mechatronics Centre

+

Let us test our dry-friction model:

• The mass (5kg) has an initial speed of 5m/s
• The (negative) force is ramped up from 0 to 15N

Simulating Dry Friction

idealDryFriction mass

m=5

f

force

ramp

duration=10

© Dirk Zimmer, January 2015, Slide 45

Robotics and Mechatronics Centre

+

Here is the simulation result:

Simulating Dry Friction

0 2 4 6 8 10
-4

-2

0

2

4

6

8
mass.v [m/s] mass.s [m]

Forward

Backward Stiction

StartBackw

© Dirk Zimmer, January 2015, Slide 46

Robotics and Mechatronics Centre

+

This system is more fun.

• Mass1 (5kg) is initially at rest.
• Mass2 (100kg) starts with v=1m/s.

Simulating Dry Friction

idealDryFriction mass1

m=5

spring mass2

m=100

© Dirk Zimmer, January 2015, Slide 47

Robotics and Mechatronics Centre

+

Here is the simulation result:

Simulating Dry Friction

0 10 20
-1

0

1

2

3

4

5

6

7
mass1.v [m/s] mass1.s [m] mass2.s [m]

Questions ?

	Virtual Physics�Equation-Based Modeling
	Motivation
	Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Modeling a Diode
	Modeling a Diode
	Modeling an Ideal Diode
	Modeling an Ideal Diode
	Halfway-Rectifier
	Halfway-Rect. w. Line-Inductance
	Halfway-Rect. w. Line-Inductance
	Inline-Integration
	Inline-Integration: Example
	Inline-Integration: Example
	Multi-Valued Functions
	Multi-Valued Functions
	Multi-Valued Functions
	Multi-Valued Functions
	Multi-Valued Functions
	Multi-Valued Functions
	Multi-Valued Functions
	Discrete State Changes
	Bouncing Ball
	Initializing the Revolute Joint
	Bouncing Ball
	Bouncing Ball
	Dry Friction Revisited
	Dry Friction Revisited
	Modeling Dry Friction
	Dry Friction: Mode-Transitions
	Modeling Dry Friction
	Modeling Dry Friction
	Modeling Dry Friction
	Modeling Dry Friction
	Modeling Dry Friction
	Simulating Dry Friction
	Simulating Dry Friction
	Simulating Dry Friction
	Simulating Dry Friction
	Questions ?

