Virtual Physics
Equation-Based Modeling

TUM, October 21, 2014

Modeling in Modelica — Basic Principles

model SimpleCircuit A simple RC ci
import S1 = Modelica.Slunits;
parameter Sl.Capacitance C = 0.0C
parameter Sl.Resistance = 100 7R
parameter Sl.Voltage VO = 10 Sou
SI.Current 1 ”Current” ; Sl_Volte
”’Capacitor Voltage™;
initial equation
uC = 0;
equations
VO-uC = R*1;
der(uC)*C = 1;
end SimpleCircuit;

Dr. Dirk Zimmer

=S

0T

R

———o s

R=150

[|
+

b

=0

TO0'0

T

German Aerospace Center (DLR), Robotics and Mechatronics Centre

Motivation

mm + %~

Robotics and Mechatronics Centre

In this lecture, the language

Modelica is officially introduced.

We will study the modeling of
physical systems in Modelica.

To this end, we examine the
modeling of simple electric
circuits.

Let us start with the modeling of
the electric circuit from the last
lecture

=S

0T

R=150

T0O00=D

:

© Dirk Zimmer, October 2014, Slide 2

A Simple Example

mm + %~

Robotics and Mechatronics Centre

For this simple circuit, we can still

derive all equations by hand,
even in a very compact form.

« The current is determined by:

S

10-u =R "I

0T

« And the capacitor voltage is state
of the system:

R=150

T0O00=D

du./dt-C=i

e Letus punch thatinto the
computer by using Modelica

:

© Dirk Zimmer, October 2014, Slide 3

A Simple Example

mm + %~

Robotics and Mechatronics Centre

model SimpleCircuit

parameter Real C;
parameter Real R;
parameter Real VO;

Real 1;
Real uC;

equations

VO-uC = R*1;
der(uC)*C =

end SimpleCircuit;

=S

0T

R=150

T0O00=D

:

© Dirk Zimmer, October 2014, Slide 4

Model Structure

mm + %~

Robotics and Mechatronics Centre

model SimpleCircuit

parameter Real C;
parameter Real R;
parameter Real VO;

Real 1;
Real uC;

equations

VO-uC = R*1;
:.;

der(uC)*C

end SimpleCircuit;

The fundamental Modelica entity
is a class, in this case it is a
model.

Then we declare the Model
parameters...

... and the system variables.

Finally, there are the model
equations.

This is the general structure of
every model.

The order of equations does not
matter. This holds also for the
order of declarations.

© Dirk Zimmer, October 2014, Slide 5

Model Structure

mm + %~

Robotics and Mechatronics Centre

model SimpleCircuit
”A simple RC circuit”

parameter Real C;
parameter Real R;
parameter Real VO;

Real 1;
Real uC;

equations

VO-uC = R*1;
der(uC)*C =

end SimpleCircuit;

Each model starts with the

header...

...and ends with a repetition of its

Name.

We can add a model description
and indeed we should do so.

© Dirk Zimmer, October 2014, Slide 6

Parameters

mm + %~

Robotics and Mechatronics Centre

model SimpleCircuit
”A simple RC circuit”

parameter Real C = 0.001
"Capacity";
parameter Real R
"Resistance”;
parameter Real VO = 10
’Source Voltage”;

100

Real 1;
Real uC;

equations

VO-uC = R*1;
der(uC)*C =

end SimpleCircuit;

Parameter represent values that
are determined before the
simulation starts and remain
constant during the simulation
time.

Also the parameter declarations
can be extended by a description.

We can also provide default
values.

© Dirk Zimmer, October 2014, Slide 7

Variable Types nm - ¢

Robotics and Mechatronics Centre

model SimpleCircuit « The most important basic
"A simple RC circuirt” variable types are:
parameter Real C = 0.001 - Real
’Capacity”;
P o - Integer

parameter Real R = 100
’Resistance’”;

-~ Boolean
parameter Real VO = 10
’Source Voltage”;
Real i “Current” ; « There are also strings and
Real uC Capacitor Voltage”; enumerations.

equations
e A textual description should also
VO-uC = R*1; be assigned to the variables.
der(uC)*C = 1;

end SimpleCircuit;

© Dirk Zimmer, October 2014, Slide 8

Equation Block

mm + %~

Robotics and Mechatronics Centre

model SimpleCircuit
”A simple RC circuit”

parameter Real C = 0.001
’Capacity”;

parameter Real R = 100
’Resistance’”;

parameter Real VO = 10
’Source Voltage™;

Real 1 Current” ;

Real uC ’Capacitor Voltage™;

equations

VO-uC = R*1;
der(uC)*C =

end SimpleCircuit;

Equations can be stated in any
order.

The operator der(...) is a built-in
operator and represents the
time-derivative

IMPORTANT! The equation is not
causal; it is a non-causal relation
between variables. It is not an
assignment!

If we want to state a causal
assignment we can use

instead of

© Dirk Zimmer, October 2014, Slide 9

Initial equations nm + %

Robotics and Mechatronics Centre

model SimpleCircuit e We are still missing the initial
”A simple RC circuit” equations.

parameter Real C = 0.001

”Capacity”;
parameter Real R = 100 « They can be stated in a separate
’Resistance”; block.

parameter Real VO = 10
’Source Voltage”;

Real 1 “Current” ; o If thereis a insufficient number of

Real uC “Capacitor Voltage™; initial equations, Dymola will
L _ assume zero (or a nominal value)
initial equation .. :

uc = 0- for the remaining undetermined
equations variables.

VO-uC = R*1;

der(uC)*C = 1;

end SimpleCircuit; « Also a warning is displayed.

© Dirk Zimmer, October 2014, Slide 10

Units (1) nm - 4

Robotics and Mechatronics Centre

model SimpleCircuit e We can assign units to the
“A simple RC circuit” variables and parameters.

parameter Real C(unit="F") =

0.001 ”Capacity’;

parameter Real R(unit="0hm™) These units are than matched in
= 100 ”’Resistance”; the equations.

parameter Real VO(unit="V’")

= 10 ”Source Voltage”;

Real i(unit="A") “Current” ; e In case of a unit mismatch, a

Real uC(unit="V’) warning is messaged.
’Capacitor Voltage”;

initial equation

uC = 0;

equations « Modeling shall always be
VO-uC = R*i; performed using the Sl units.
der(uC)*C = 1;

end SimpleCircuit;

© Dirk Zimmer, October 2014, Slide 11

Units (2)

mm + %~

Robotics and Mechatronics Centre

model SimpleCircuit
”A simple RC circuit”
import SI = Modelica.Slunits;
parameter Sl.Capacitance C =
0.001 Capacity’”;
parameter Sl._Resistance R =
= 100 ”Resistance’;
parameter Sl .Voltage VO
= 10 ”Source Voltage”;

S1._.Current 1 ”Current” ;
S1.Voltage uC
’Capacitor Voltage™;
initial equation
uC = 0;
equations
VO-uC = R*1;
der(uC)*C =

end SimpleCircuit;

It is in general more convenient
to use the predefined set of types
of the Modelica.Slunits package.

The package can be imported by
using the import statement.

Usually, the import is only done
once for each package of models.
Not in every model separately as
here.

© Dirk Zimmer, October 2014, Slide 12

Summary

mm + %~

Robotics and Mechatronics Centre

model SimpleCircuit

”A simple RC circuit”

import SI = Modelica.Slunits;
parameter Sl.Capacitance C =
0.001 Capacity’”;

parameter Sl._Resistance R =
= 100 ”Resistance’;
parameter Sl .Voltage VO
= 10 ”Source Voltage”;

S1._.Current 1 ”Current” ;

S1.Voltage uC
’Capacitor Voltage™;
initial equation

uC = 0;
equations

VO-uC = R*1;

der(uC)*C =

end SimpleCircuit;

Voila, our first complete Modelica
model.

Modeling in such a flat way is
only possible of small systems.

In order to model larger system
we want to decompose our
systems into components.

We can do this by creating a
separate model for each
component.

© Dirk Zimmer, October 2014, Slide 13

The Ground Model

mm + %~

Robotics and Mechatronics Centre

model Ground
”Ground Element”

SI._.Current 1;
S1.Voltage v;

equations
v=0;

end Ground;

As we have learned last lecture,
the ground is represented by a
pair of variables

-~ The voltage potential v

— The current i

Please note that the model is
incomplete. Two variables but
just one equation.

The missing equations will be
added when we connect the
component within the circuit.

© Dirk Zimmer, October 2014, Slide 14

The Resistor

mm + %~

Robotics and Mechatronics Centre

model Resistor

”Resistor Model”

parameter Sl._Resistance R;

SI.Current 11;
S1_.Voltage vi;

SI.Current 12;
S1_.Voltage v2;

protected
Sl.Current 1;
S1.Voltage u;

equations

The resistor has two pins, and
consequently, it requires two
pairs of variables.

Internal variables can be hidden
in a protected section. These
variables are not accessible from
outside.

Again the model is incomplete

6 variables and 4 equations.

© Dirk Zimmer, October 2014, Slide 15

The Capacitor

mm + %~

Robotics and Mechatronics Centre

model Capacitor .
’Ideal Capacitor Model”

parameter Sl.Capacitance C;

SI.Current 11;
S1_.Voltage vi;

SI.Current 12;
S1_.Voltage v2;

protected
Sl.Current 1;
S1.Voltage u;

equations
u = v2-vl;
11 + 12 = 0;
1 = 12;
der(u)*C = 1;
end Capacitor;

The capacitor looks almost the

SdMme.

© Dirk Zimmer, October 2014, Slide 16

The Voltage Source

mm + %~

Robotics and Mechatronics Centre

model ConstantVoltage
”A Source of Constant Voltage”

parameter Sl.Voltage VO = 100;

SI.Current 11;
Sl1_.Voltage vi;

SI.Current 12;
S1_.Voltage v2;

protected
Sl.Current 1;
S1.Voltage u;

equations
u = v2-vl;
11 + 12 = 0;
1 =12
u = Vo
end ConstantVoltage;

item

© Dirk Zimmer, October 2014, Slide 17

Creating a Package

mm + %~

Robotics and Mechatronics Centre

package Electrics
’Basic Electric Elements”

import SI = Modelica.Slunits;
model Ground

ena Ground;

model Resistor

ena Resistor;

model Capacitor

end Capacitor;

end Electrics;

All these models can be collected
in a Modelica package

A package can contain arbitrary
classes, also sub-packages.

The look-up of class-names
within a package is first done
locally within a class and then
further up the hierarchy.

Hence, the import statement is
valid for all models in the
package.

|dentifiers of instances (variables
or components) are only looked
up locally.

© Dirk Zimmer, October 2014, Slide 18

Using the Package

mm + %~

Robotics and Mechatronics Centre

model SimpleCircuit
”A simple RC Circuit”

Electrics.Ground G;
Electrics.ConstantVoltage S
(V0=10);

Electrics.Resistor R(R=100);
Electrics.Capacitor C(C=0.001);

equations

end SimpleCircuit;

Now we can use these models in
order to compose our circuit.

To this end, we simply declare the
models like simple variables.

We can set the parameters of the
sub-model in the modifier.

We are still missing
3-2 +1 =7 equations...

© Dirk Zimmer, October 2014, Slide 19

Using the Package

mm + %~

Robotics and Mechatronics Centre

model SimpleCircuit
”A simple RC Circuit”

Electrics.Ground G;
Electrics.ConstantVoltage S
(V0=10);

Electrics.Resistor R(R=100);
Electrics.Capacitor C(C=0.001);

equations
S.v2 = R.vl
S.12 + R.i1l = 0;

R.v2 = C.vl

R.12 + C.11 = O;

C.v2 = S.vl

C.v2 = G.v

C.12 + S_.i11 + G.1 = 0O;

end SimpleCircuit;

The missing equations are the
connection equations of the
nodes.

We still have to enter these
equations manually.

This is highly inconvenient and
error-prone.

For this reason, Modelica enables
the definition of connectors.

© Dirk Zimmer, October 2014, Slide 20

Connectors Tt - ‘#;?R

Robotics and Mechatronics Centre

connector PiIn

Si.Voltage v "Potential at the pin";
flow SI.Current 1 "Current flowing Into the pin";

end PiIn;

e This is the definiton of the corresponding connector.
e |t consists in a set of variables.
e These variables can be declared to be...

— potential variables: S1.Voltage v
— flow variables: flow SI.Current 1

© Dirk Zimmer, October 2014, Slide 21

Connector equations m + ‘#m

Robotics and Mechatronics Centre

connector PiIn

Si.Voltage v "Potential at the pin";
flow SI.Current 1 "Current flowing Into the pin";

end PiIn;

e We can link two ore more pins by using the connect statement.

pinl.v
connect(pinl, pin2) } 0inl.v

connect(pinl, pin3)

pin2.v

pin3.v

pinl.i1 + pin2.1 +pin3.1 =0

e The equations are generated in dependence on the declaration

e Connections form a graph that represents a wood and that is

component relevant and structure irrelevant.
© Dirk Zimmer, October 2014, Slide 22

Modeling with Connectors nm - 4%

Robotics and Mechatronics Centre

model Resistor e Let usintegrate the pin connector
“Resistor Model™ in our Resistor model.

parameter Sl._Resistance R;

Pin n: e To this end, we declare two pins

SI._.Current 1;

SI.Voltage u; « We can access the connector

variables like any other variables.
equations

o Likewise, the procedure is done
for all other components

I =
O <

C = 35 C
i1 I-' 1
DT + O
- =T <

-

end Resistor;

© Dirk Zimmer, October 2014, Slide 23

Balanced Models Tt - ‘#;?R

Robotics and Mechatronics Centre

model Resistor e Using connectors has an
“Resistor Model” immediate advantage for our
models.

parameter Sl._Resistance R;

e Inany physical model, there will
be exactly one connecting
equation for each pair of

SI.Current i; connector variables.
Sl1.Voltage u;
« Hence, we can immediately check

if our system is structurally

equations regular
u=p-v = ”-‘(;; e 2 variables + 4 connector
n.i + p.i = 0; : _
i = plis variables = 6
u = R*1;

e 2 connector equations and 4 local

end Resistor; equations = 6

e Bingo!
© Dirk Zimmer, October 2014, Slide 24

Connecting Components nm - 4%

Robotics and Mechatronics Centre

model SimpleCircuit e Back to our simple RC Circuit.
”A simple RC Circuit”

Electrics.Ground G; he circui
Electrics.ConstantVoltage S Now we can compose the circuit

(V0=10); by using the connect statement.
Electrics.Resistor R(R=100);
Electrics.Capacitor C(C=0.001);

e This looks much better than
before.

equations
connect(G.p,S.n);
connect(S.p,R.n);
connect(R.p,C.n);
connect(C.p,G.p);

end SimpleCircuit;

© Dirk Zimmer, October 2014, Slide 25

Second Example

mm + %~

Robotics and Mechatronics Centre

Now, we can compose the model of a (slightly) larger electric circuit

almost without having to think (politician proof).

R1 R2
-] - —L]
R=100 R=20
O - q =
S/ 9O i
() g3 gzo
L (&) (@)]

© Dirk Zimmer, October 2014, Slide 26

Second Example nm - ¢

Robotics and Mechatronics Centre

model Circuit R1 R2
Resistor R1(R=100); { = & -0

Resistor R2(R=20);

Capacitor C(C=1le-6);

Inductor L({(L=0.0015;

SineVSource S(Ampl=15, Freqg=50);
Ground G;

equations
G

connect(G.p,S-n)
connect(G.p,L.n)
connect(G.p,R2.n)
connect(G.p,C.n)

.,

GL00°0=11
T

connect(S.p,R1.p)
connect(S.p,L-p)

connect(R1.n,R2.p)
connect(R1.n,C.p)
end Pin;

© Dirk Zimmer, October 2014, Slide 27

Second Example nm - ¢

Robotics and Mechatronics Centre

model Circuit
Resistor R1(R=100);
Resistor R2(R=20); component equ.
Capacitor C(C=1le-6);
Inductor L(L=0.0015;

54+1-1=21

SineVSource S(Ampl=15, Freqg=50); 5.6+ 1-2 =32
Ground G;
unknowns
equations .
connect(G.p,S.n) 32 equations
connect(G.p,L.n) 32 unknowns

connect(G.p,R2.n)
connect(G.p,C.n)

connect(S.p,R1.p) 8 potential equations
connect(S.p,L.p) 3 flow equations

connect(R1.n,R2.p)
connect(R1.n,C.p)
end Circuit;

© Dirk Zimmer, October 2014, Slide 28

Inheritance Tt - ‘#;?R

Robotics and Mechatronics Centre

partial model OnePort e We already noticed that the
resistor, capacitor, and voltage
S1.Voltage u; source share most of their
S1.Current i; equations.
Pin p; e \We can share this common part by
Pin n; declaring an abstract base model.
equation e The base model can serve as
Uu=p.v - n.v; template for many concrete
0 =p.i +n.i; models.
1 = p.1;
end OnePort: e I|tis denoted as partial, since there

are equations missing and the
abstract base model should not be
instantiated.

© Dirk Zimmer, October 2014, Slide 29

Inheritance

mm + %~

Robotics and Mechatronics Centre

partial model OnePort

S1.Voltage u;
SI.Current 1;

equation
u=p.v - Nn.v;

O =p.1 +n.1;
1 = p.1;

end OnePort;

model Capacitor
extends OnePort;

parameter
Sl .Capacitance C=1;
equation
der(u)*C = 1;

end Capacitor;

model Resistor
extends OnePort;

parameter
SI.Resistance R=1;

equation
u = R*1;
end Capacitor;

© Dirk Zimmer, October 2014, Slide 30

Inheritance

mm + %~

Robotics and Mechatronics Centre

New models can be generated out
of the partial base model by the
keyword extends.

Then the missing parameters and
equations are added.

The keyword extends can be
applied in a very generic way.

Multiple inheritance is possible as
well.

model Capacitor
extends OnePort;

parameter
Sl .Capacitance C=1;
equation
der(u)*C = 1;

end Capacitor;

model Resistor
extends OnePort;

parameter
SI.Resistance R=1;

equation
u = R*1;
end Capacitor;

© Dirk Zimmer, October 2014, Slide 31

Conclusions T - ‘#m

Robotics and Mechatronics Centre

Let us conclude by a few general remarks

Modelica provides means to express differential-algebraic equation
systems in a convenient way.

Modelica enables to organize the knowledge in a hierarchical form.

Modelica is a declarative modeling language. It is not a programming
language.

The declarative style enables the modeler to focus on what he wants to
model rather than to think about how to achieve a computational
realization.

In this way, the models become also more self-contained. They represent
meaningful semantic entities by themselves even without being
simulated.

© Dirk Zimmer, October 2014, Slide 32

Outlook nm - 4%

Robotics and Mechatronics Centre

In this lecture we looked at the textual modeling.

But most of the modeling in Modelica/Dymola is graphical.

© Dirk Zimmer, October 2014, Slide 33

The End

	Virtual Physics�Equation-Based Modeling
	Motivation
	A Simple Example
	A Simple Example
	Model Structure
	Model Structure
	Parameters
	Variable Types
	Equation Block
	Initial equations
	Units (1)
	Units (2)
	Summary
	The Ground Model
	The Resistor
	The Capacitor
	The Voltage Source
	Creating a Package
	Using the Package
	Using the Package
	Connectors
	Connector equations
	Modeling with Connectors
	Balanced Models
	Connecting Components
	Second Example
	Second Example
	Second Example
	Inheritance
	Inheritance
	Inheritance
	Conclusions
	Outlook
	The End

