
Virtual Physics
Equation-Based Modeling

Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre

TUM, October 21 , 2014

Modeling in Modelica – Basic Principles

model SimpleCircuit ”A simple RC circuit”
 import SI = Modelica.SIunits;
 parameter SI.Capacitance C = 0.001 ”Capacity”;
 parameter SI.Resistance = 100 ”Resistance”;
 parameter SI.Voltage V0 = 10 ”Source Voltage”;
 SI.Current i ”Current” ; SI.Voltage uC
 ”Capacitor Voltage”;
initial equation
 uC = 0;
equations
 V0-uC = R*i;
 der(uC)*C = i;
end SimpleCircuit;

R=150

R

G

C
=0.001

C

S=10

+
-

© Dirk Zimmer, October 2014, Slide 2

Robotics and Mechatronics Centre

+

In this lecture, the language
Modelica is officially introduced.

• We will study the modeling of
physical systems in Modelica.

• To this end, we examine the
modeling of simple electric
circuits.

• Let us start with the modeling of
the electric circuit from the last
lecture

Motivation

R=150

R

G

C
=0.001

C

S=10

+
-

© Dirk Zimmer, October 2014, Slide 3

Robotics and Mechatronics Centre

+

For this simple circuit, we can still
derive all equations by hand,
even in a very compact form.

• The current is determined by:

 10 - uC = R ∙ i

• And the capacitor voltage is state
of the system:

 duC/dt ∙ C = i

• Let us punch that into the
computer by using Modelica

A Simple Example

R=150

R

G

C
=0.001

C

S=10

+
-

© Dirk Zimmer, October 2014, Slide 4

Robotics and Mechatronics Centre

+ A Simple Example

R=150

R

G

C
=0.001

C

S=10

+
-

model SimpleCircuit

 parameter Real C;
 parameter Real R;
 parameter Real V0;

 Real i;
 Real uC;

equations

 V0-uC = R*i;
 der(uC)*C = i;

end SimpleCircuit;

© Dirk Zimmer, October 2014, Slide 5

Robotics and Mechatronics Centre

+ Model Structure

model SimpleCircuit

 parameter Real C;
 parameter Real R;
 parameter Real V0;

 Real i;
 Real uC;

equations

 V0-uC = R*i;
 der(uC)*C = i;

end SimpleCircuit;

• The fundamental Modelica entity
is a class, in this case it is a
model.

• Then we declare the Model
parameters...

• … and the system variables.

• Finally, there are the model
equations.

• This is the general structure of
every model.

• The order of equations does not
matter. This holds also for the
order of declarations.

© Dirk Zimmer, October 2014, Slide 6

Robotics and Mechatronics Centre

+ Model Structure

model SimpleCircuit
 ”A simple RC circuit”

 parameter Real C;
 parameter Real R;
 parameter Real V0;

 Real i;
 Real uC;

equations

 V0-uC = R*i;
 der(uC)*C = i;

end SimpleCircuit;

• Each model starts with the
header…

• …and ends with a repetition of its
name.

• We can add a model description
and indeed we should do so.

© Dirk Zimmer, October 2014, Slide 7

Robotics and Mechatronics Centre

+ Parameters

model SimpleCircuit
 ”A simple RC circuit”

 parameter Real C = 0.001
 "Capacity";
 parameter Real R = 100
 " Resistance”;
 parameter Real V0 = 10
 ”Source Voltage”;

 Real i;
 Real uC;

equations

 V0-uC = R*i;
 der(uC)*C = i;

end SimpleCircuit;

• Parameter represent values that
are determined before the
simulation starts and remain
constant during the simulation
time.

• Also the parameter declarations
can be extended by a description.

• We can also provide default
values.

© Dirk Zimmer, October 2014, Slide 8

Robotics and Mechatronics Centre

+ Variable Types

model SimpleCircuit
 ”A simple RC circuit”

 parameter Real C = 0.001
 ”Capacity”;
 parameter Real R = 100
 ”Resistance”;
 parameter Real V0 = 10
 ”Source Voltage”;

 Real i ”Current” ;
 Real uC ”Capacitor Voltage”;

equations

 V0-uC = R*i;
 der(uC)*C = i;

end SimpleCircuit;

• The most important basic
variable types are:

– Real

– Integer

– Boolean

• There are also strings and
enumerations.

• A textual description should also
be assigned to the variables.

© Dirk Zimmer, October 2014, Slide 9

Robotics and Mechatronics Centre

+ Equation Block

model SimpleCircuit
 ”A simple RC circuit”

 parameter Real C = 0.001
 ”Capacity”;
 parameter Real R = 100
 ”Resistance”;
 parameter Real V0 = 10
 ”Source Voltage”;

 Real i ”Current” ;
 Real uC ”Capacitor Voltage”;

equations

 V0-uC = R*i;
 der(uC)*C = i;

end SimpleCircuit;

• Equations can be stated in any
order.

• The operator der(…) is a built-in
operator and represents the
time-derivative

• IMPORTANT! The equation is not
causal; it is a non-causal relation
between variables. It is not an
assignment!

• If we want to state a causal
assignment we can use
 :=
instead of
 =

© Dirk Zimmer, October 2014, Slide 10

Robotics and Mechatronics Centre

+ Initial equations

model SimpleCircuit
 ”A simple RC circuit”

 parameter Real C = 0.001
 ”Capacity”;
 parameter Real R = 100
 ”Resistance”;
 parameter Real V0 = 10
 ”Source Voltage”;

 Real i ”Current” ;
 Real uC ”Capacitor Voltage”;

initial equation
 uC = 0;
equations
 V0-uC = R*i;
 der(uC)*C = i;

end SimpleCircuit;

• We are still missing the initial
equations.

• They can be stated in a separate
block.

• If there is a insufficient number of
initial equations, Dymola will
assume zero (or a nominal value)
for the remaining undetermined
variables.

• Also a warning is displayed.

© Dirk Zimmer, October 2014, Slide 11

Robotics and Mechatronics Centre

+ Units (1)

model SimpleCircuit
 ”A simple RC circuit”

 parameter Real C(unit=”F”) =
 0.001 ”Capacity”;
 parameter Real R(unit=”Ohm”)
 = 100 ”Resistance”;
 parameter Real V0(unit=”V”)
 = 10 ”Source Voltage”;

 Real i(unit=”A”) ”Current” ;
 Real uC(unit=”V”)
 ”Capacitor Voltage”;
initial equation
 uC = 0;
equations
 V0-uC = R*i;
 der(uC)*C = i;

end SimpleCircuit;

• We can assign units to the
variables and parameters.

• These units are than matched in
the equations.

• In case of a unit mismatch, a
warning is messaged.

• Modeling shall always be
performed using the SI units.

© Dirk Zimmer, October 2014, Slide 12

Robotics and Mechatronics Centre

+ Units (2)

model SimpleCircuit
 ”A simple RC circuit”
 import SI = Modelica.SIunits;
 parameter SI.Capacitance C =
 0.001 ”Capacity”;
 parameter SI.Resistance R =
 = 100 ”Resistance”;
 parameter SI.Voltage V0
 = 10 ”Source Voltage”;

 SI.Current i ”Current” ;
 SI.Voltage uC
 ”Capacitor Voltage”;
initial equation
 uC = 0;
equations
 V0-uC = R*i;
 der(uC)*C = i;

end SimpleCircuit;

• It is in general more convenient
to use the predefined set of types
of the Modelica.SIunits package.

• The package can be imported by
using the import statement.

• Usually, the import is only done
once for each package of models.
Not in every model separately as
here.

© Dirk Zimmer, October 2014, Slide 13

Robotics and Mechatronics Centre

+ Summary

model SimpleCircuit
 ”A simple RC circuit”
 import SI = Modelica.SIunits;
 parameter SI.Capacitance C =
 0.001 ”Capacity”;
 parameter SI.Resistance R =
 = 100 ”Resistance”;
 parameter SI.Voltage V0
 = 10 ”Source Voltage”;

 SI.Current i ”Current” ;
 SI.Voltage uC
 ”Capacitor Voltage”;
initial equation
 uC = 0;
equations
 V0-uC = R*i;
 der(uC)*C = i;

end SimpleCircuit;

• Voila, our first complete Modelica
model.

• Modeling in such a flat way is
only possible of small systems.

• In order to model larger system
we want to decompose our
systems into components.

• We can do this by creating a
separate model for each
component.

© Dirk Zimmer, October 2014, Slide 14

Robotics and Mechatronics Centre

+ The Ground Model

model Ground
 ”Ground Element”

 SI.Current i;
 SI.Voltage v;

equations
 v=0;

end Ground;

• As we have learned last lecture,
the ground is represented by a
pair of variables

– The voltage potential v

– The current i

• Please note that the model is
incomplete. Two variables but
just one equation.

• The missing equations will be
added when we connect the
component within the circuit.

© Dirk Zimmer, October 2014, Slide 15

Robotics and Mechatronics Centre

+ The Resistor

model Resistor
 ”Resistor Model”

 parameter SI.Resistance R;

 SI.Current i1;
 SI.Voltage v1;

 SI.Current i2;
 SI.Voltage v2;

protected
 SI.Current i;
 SI.Voltage u;

equations
 u = v2-v1;
 i1 + i2 = 0;
 i = i2;
 u = R*i;
end Resistor;

• The resistor has two pins, and
consequently, it requires two
pairs of variables.

• Internal variables can be hidden
in a protected section. These
variables are not accessible from
outside.

• Again the model is incomplete

 6 variables and 4 equations.

© Dirk Zimmer, October 2014, Slide 16

Robotics and Mechatronics Centre

+ The Capacitor

model Capacitor
 ”Ideal Capacitor Model”

 parameter SI.Capacitance C;

 SI.Current i1;
 SI.Voltage v1;

 SI.Current i2;
 SI.Voltage v2;

protected
 SI.Current i;
 SI.Voltage u;

equations
 u = v2-v1;
 i1 + i2 = 0;
 i = i2;
 der(u)*C = i;
end Capacitor;

• The capacitor looks almost the
same.

© Dirk Zimmer, October 2014, Slide 17

Robotics and Mechatronics Centre

+ The Voltage Source

model ConstantVoltage
 ”A Source of Constant Voltage”

 parameter SI.Voltage V0 = 100;

 SI.Current i1;
 SI.Voltage v1;

 SI.Current i2;
 SI.Voltage v2;

protected
 SI.Current i;
 SI.Voltage u;

equations
 u = v2-v1;
 i1 + i2 = 0;
 i = i2;
 u = V0;
end ConstantVoltage;

• item

© Dirk Zimmer, October 2014, Slide 18

Robotics and Mechatronics Centre

+ Creating a Package

package Electrics
 ”Basic Electric Elements”

 import SI = Modelica.SIunits;

 model Ground
 …
 end Ground;

 model Resistor
 …
 end Resistor;

 model Capacitor
 …
 end Capacitor;

 …

end Electrics;

• All these models can be collected
in a Modelica package

• A package can contain arbitrary
classes, also sub-packages.

• The look-up of class-names
within a package is first done
locally within a class and then
further up the hierarchy.

• Hence, the import statement is
valid for all models in the
package.

• Identifiers of instances (variables
or components) are only looked
up locally.

© Dirk Zimmer, October 2014, Slide 19

Robotics and Mechatronics Centre

+ Using the Package

model SimpleCircuit
 ”A simple RC Circuit”

 Electrics.Ground G;
 Electrics.ConstantVoltage S
 (V0=10);
 Electrics.Resistor R(R=100);
 Electrics.Capacitor C(C=0.001);

equations
 …

end SimpleCircuit;

• Now we can use these models in
order to compose our circuit.

• To this end, we simply declare the
models like simple variables.

• We can set the parameters of the
sub-model in the modifier.

• We are still missing
3∙2 + 1 = 7 equations…

© Dirk Zimmer, October 2014, Slide 20

Robotics and Mechatronics Centre

+ Using the Package

model SimpleCircuit
 ”A simple RC Circuit”

 Electrics.Ground G;
 Electrics.ConstantVoltage S
 (V0=10);
 Electrics.Resistor R(R=100);
 Electrics.Capacitor C(C=0.001);

equations
 S.v2 = R.v1
 S.i2 + R.i1 = 0;

 R.v2 = C.v1
 R.i2 + C.i1 = 0;

 C.v2 = S.v1
 C.v2 = G.v
 C.i2 + S.i1 + G.i = 0;

end SimpleCircuit;

• The missing equations are the
connection equations of the
nodes.

• We still have to enter these
equations manually.

• This is highly inconvenient and
error-prone.

• For this reason, Modelica enables
the definition of connectors.

© Dirk Zimmer, October 2014, Slide 21

Robotics and Mechatronics Centre

+ Connectors

connector Pin

 SI.Voltage v "Potential at the pin";
 flow SI.Current i "Current flowing into the pin";

end Pin;

• This is the definiton of the corresponding connector.

• It consists in a set of variables.

• These variables can be declared to be…
– potential variables: SI.Voltage v

– flow variables: flow SI.Current i

© Dirk Zimmer, October 2014, Slide 22

Robotics and Mechatronics Centre

+ Connector equations

connector Pin

 SI.Voltage v "Potential at the pin";
 flow SI.Current i "Current flowing into the pin";

end Pin;

• We can link two ore more pins by using the connect statement.

• The equations are generated in dependence on the declaration
• Connections form a graph that represents a wood and that is

component relevant and structure irrelevant.

connect(pin1, pin2)

connect(pin1, pin3) }
pin1.v = pin2.v

pin1.v = pin3.v

pin1.i + pin2.i +pin3.i = 0

© Dirk Zimmer, October 2014, Slide 23

Robotics and Mechatronics Centre

+ Modeling with Connectors

model Resistor
 ”Resistor Model”

 parameter SI.Resistance R;

 Pin n;
 Pin p;

 SI.Current i;
 SI.Voltage u;

equations

 u = p.v - n.v;
 n.i + p.i = 0;
 i = p.i;
 u = R*i;

end Resistor;

• Let us integrate the pin connector
in our Resistor model.

• To this end, we declare two pins

• We can access the connector
variables like any other variables.

• Likewise, the procedure is done
for all other components

© Dirk Zimmer, October 2014, Slide 24

Robotics and Mechatronics Centre

+ Balanced Models

model Resistor
 ”Resistor Model”

 parameter SI.Resistance R;

 Pin n;
 Pin p;

 SI.Current i;
 SI.Voltage u;

equations

 u = p.v - n.v;
 n.i + p.i = 0;
 i = p.i;
 u = R*i;

end Resistor;

• Using connectors has an
immediate advantage for our
models.

• In any physical model, there will
be exactly one connecting
equation for each pair of
connector variables.

• Hence, we can immediately check
if our system is structurally
regular.

• 2 variables + 4 connector
variables = 6

• 2 connector equations and 4 local
equations = 6

• Bingo!

© Dirk Zimmer, October 2014, Slide 25

Robotics and Mechatronics Centre

+ Connecting Components

model SimpleCircuit
 ”A simple RC Circuit”

 Electrics.Ground G;
 Electrics.ConstantVoltage S
 (V0=10);
 Electrics.Resistor R(R=100);
 Electrics.Capacitor C(C=0.001);

equations

 connect(G.p,S.n);

 connect(S.p,R.n);

 connect(R.p,C.n);

 connect(C.p,G.p);

end SimpleCircuit;

• Back to our simple RC Circuit.

• Now we can compose the circuit
by using the connect statement.

• This looks much better than
before.

© Dirk Zimmer, October 2014, Slide 26

Robotics and Mechatronics Centre

+ Second Example

• Now, we can compose the model of a (slightly) larger electric circuit
almost without having to think (politician proof).

© Dirk Zimmer, October 2014, Slide 27

Robotics and Mechatronics Centre

+ Second Example

model Circuit
 Resistor R1(R=100);
 Resistor R2(R=20);
 Capacitor C(C=1e-6);
 Inductor L(L=0.0015;
 SineVSource S(Ampl=15, Freq=50);
 Ground G;

equations
 connect(G.p,S.n)
 connect(G.p,L.n)
 connect(G.p,R2.n)
 connect(G.p,C.n)

 connect(S.p,R1.p)
 connect(S.p,L.p)

 connect(R1.n,R2.p)
 connect(R1.n,C.p)
end Pin;

© Dirk Zimmer, October 2014, Slide 28

Robotics and Mechatronics Centre

+ Second Example

model Circuit
 Resistor R1(R=100);
 Resistor R2(R=20);
 Capacitor C(C=1e-6);
 Inductor L(L=0.0015;
 SineVSource S(Ampl=15, Freq=50);
 Ground G;

equations
 connect(G.p,S.n)
 connect(G.p,L.n)
 connect(G.p,R2.n)
 connect(G.p,C.n)

 connect(S.p,R1.p)
 connect(S.p,L.p)

 connect(R1.n,R2.p)
 connect(R1.n,C.p)
end Circuit;

5·4 + 1·1 = 21

component equ.

5·6 + 1·2 =32

unknowns

8 potential equations

3 flow equations

}

}

}

32 equations

32 unknowns

© Dirk Zimmer, October 2014, Slide 29

Robotics and Mechatronics Centre

+ Inheritance

partial model OnePort

 SI.Voltage u;

 SI.Current i;

 Pin p;

 Pin n;

equation
 u = p.v - n.v;

 0 = p.i + n.i;

 i = p.i;

end OnePort;

• We already noticed that the
resistor, capacitor, and voltage
source share most of their
equations.

• We can share this common part by
declaring an abstract base model.

• The base model can serve as
template for many concrete
models.

• It is denoted as partial, since there
are equations missing and the
abstract base model should not be
instantiated.

© Dirk Zimmer, October 2014, Slide 30

Robotics and Mechatronics Centre

+ Inheritance

partial model OnePort

 SI.Voltage u;

 SI.Current i;

 Pin p;

 Pin n;

equation
 u = p.v - n.v;

 0 = p.i + n.i;

 i = p.i;

end OnePort;

model Capacitor
 extends OnePort;
 parameter

SI.Capacitance C=1;

equation
 der(u)*C = i;

end Capacitor;

model Resistor
 extends OnePort;
 parameter

SI.Resistance R=1;

equation
 u = R*i;

end Capacitor;

© Dirk Zimmer, October 2014, Slide 31

Robotics and Mechatronics Centre

+ Inheritance

model Capacitor
 extends OnePort;
 parameter

SI.Capacitance C=1;

equation
 der(u)*C = i;

end Capacitor;

model Resistor
 extends OnePort;
 parameter

SI.Resistance R=1;

equation
 u = R*i;

end Capacitor;

• New models can be generated out
of the partial base model by the
keyword extends.

• Then the missing parameters and
equations are added.

• The keyword extends can be
applied in a very generic way.

• Multiple inheritance is possible as
well.

© Dirk Zimmer, October 2014, Slide 32

Robotics and Mechatronics Centre

+ Conclusions

Let us conclude by a few general remarks

• Modelica provides means to express differential-algebraic equation
systems in a convenient way.

• Modelica enables to organize the knowledge in a hierarchical form.

• Modelica is a declarative modeling language. It is not a programming
language.

• The declarative style enables the modeler to focus on what he wants to
model rather than to think about how to achieve a computational
realization.

• In this way, the models become also more self-contained. They represent
meaningful semantic entities by themselves even without being
simulated.

© Dirk Zimmer, October 2014, Slide 33

Robotics and Mechatronics Centre

+ Outlook

• In this lecture we looked at the textual modeling.

• But most of the modeling in Modelica/Dymola is graphical.

The End

	Virtual Physics�Equation-Based Modeling
	Motivation
	A Simple Example
	A Simple Example
	Model Structure
	Model Structure
	Parameters
	Variable Types
	Equation Block
	Initial equations
	Units (1)
	Units (2)
	Summary
	The Ground Model
	The Resistor
	The Capacitor
	The Voltage Source
	Creating a Package
	Using the Package
	Using the Package
	Connectors
	Connector equations
	Modeling with Connectors
	Balanced Models
	Connecting Components
	Second Example
	Second Example
	Second Example
	Inheritance
	Inheritance
	Inheritance
	Conclusions
	Outlook
	The End

