
Virtual Physics
Equation-Based Modeling

Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre

TUM, October 21, 2014

Modeling in Modelica – Graphical Modeling

model SimpleCircuit ”A simple RC circuit”
 import SI = Modelica.SIunits;
 parameter SI.Capacitance C = 0.001 ”Capacity”;
 parameter SI.Resistance = 100 ”Resistance”;
 parameter SI.Voltage V0 = 10 ”Source Voltage”;
 SI.Current i ”Current” ; SI.Voltage uC
 ”Capacitor Voltage”;
initial equation
 uC = 0;
equations
 V0-uC = R*i;
 der(uC)*C = i;
end SimpleCircuit;

R=150

R

G

C
=0.001

C

S=10

+
-

© Dirk Zimmer, October 2014, Slide 2

Robotics and Mechatronics Centre

+

In this lecture, the language
Modelica is officially introduced.

• The graphical modeling layers in
Dymola

• Annotations
• Parameter GUI
• Initialization via GUI
• Modelica Blocks
• Inputs / Outputs
• Blocks and Functions

Outline

R=150

R

G

C
=0.001

C

S=10

+
-

© Dirk Zimmer, October 2014, Slide 3

Robotics and Mechatronics Centre

+

So far, we have only looked at
the textual side of modeling.

• Using a modern modeling

environment like Dymola,
most modeling is performed
graphically.

• Textual modeling is only
done for the lower level
tasks.

Graphical Modeling

© Dirk Zimmer, October 2014, Slide 4

Robotics and Mechatronics Centre

+

To this end, Dymola offers three
distinct modeling layers.

• The inner textual
representation (1)

• The inner graphical
representation (2)

• The outer graphical
representation (3)

The Modeling Layers

1 2 3

© Dirk Zimmer, October 2014, Slide 5

Robotics and Mechatronics Centre

+

Let us model an RC-Filter.

• We start with the inner
graphical representation.

• Here we model the actual
sub-circuit

Inner Graphical Layer

R=R

Res
C

=C

C
ap

pin_n1 pin_n2

pin_p1 pin_p2

© Dirk Zimmer, October 2014, Slide 6

Robotics and Mechatronics Centre

+

Let us model an RC-Filter.

• On the textual layer, we
provide two parameters for
the resistor and the capacitor

Textual Layer

model RCFilter
 import SI = Modelica.SIunits;
 parameter SI.Resistance R = 100;
 parameter SI.Capacitance C = 1e-3;

 Modelica…Resistor Res(R=R);
 Modelica…Capacitor Cap(C=C);
 Modelica…NegativePin pin_n1;
 Modelica…NegativePin pin_n2;
 Modelica…PositivePin pin_p1;
 Modelica…PositivePin pin_p2;
equation
 connect(pin_p1, Res.p);
 connect(Res.n, pin_p2);
 connect(Cap.p, Res.n);
 connect(Cap.n, pin_n2);
 connect(pin_n1, pin_n2);
end RCFilter;

© Dirk Zimmer, October 2014, Slide 7

Robotics and Mechatronics Centre

+

Let us model an RC-Filter.

• The outer graphical
representation already
contains the connectors

• Now we design a suitable
symbol for our model.

• Now it is ready to be used.

Outer Graphical Layer

Low
Pass

© Dirk Zimmer, October 2014, Slide 8

Robotics and Mechatronics Centre

+

Let us model an RC-Filter.

• Here is an application of our
RC-Filter component.

• The parameters can be set by
clicking on the component.

 C = 0.01

 R = 5

Application Example

Low
Pass

RCFilter

G

Vlow

+
-

Vhigh

+
-

V

voltageSensor

© Dirk Zimmer, October 2014, Slide 9

Robotics and Mechatronics Centre

+

Simulation Result

Application Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-6

-4

-2

0

2

4

6

 [V
]

RCFilter.pin_p1.v RCFilter.pin_p2.v

© Dirk Zimmer, October 2014, Slide 10

Robotics and Mechatronics Centre

+ Annotations

• How is the graphical
information stored within
the model.

• Modelica uses
annotations for this
purpose.

• Dymola typically hides
annotations and
represents them by the
symbol: a

• The visibility of
annotations can be
enabled in the Dymola
Editor.

model RCFilter
 import SI = Modelica.SIunits;
 parameter SI.Resistance R = 100;
 parameter SI.Capacitance C = 1e-3;

 Modelica…Resistor Res(R=R) a;
 Modelica…Capacitor Cap(C=C) a;
 Modelica…NegativePin pin_n1 a;
 Modelica…NegativePin pin_n2 a;
 Modelica…PositivePin pin_p1 a;
 Modelica…PositivePin pin_p2 a;
equation
 connect(pin_p1, Res.p) a;
 connect(Res.n, pin_p2) a;
 connect(Cap.p, Res.n) a;
 connect(Cap.n, pin_n2) a;
 connect(pin_n1, pin_n2) a;
end RCFilter;

© Dirk Zimmer, October 2014, Slide 11

Robotics and Mechatronics Centre

+ Annotations

annotation(Icon(graphics={
 Rectangle(
 extent={{-80,80},{80,-80}},
 lineColor={0,0,255},
 fillColor={255,255,255},
 fillPattern=FillPattern.Solid),
 Line(
 points={{-90,60},{-60,60},
 {-60,-60},{-90,-60}},
 color={0,0,255},
 smooth=Smooth.None),
 Line(points={{90,60},{60,60},
 {60,-60},{90,-60}},
 color={0,0,255},
 smooth=Smooth.None),
 Text(extent={{-60,60},{60,2}},
 lineColor={0,0,255},
 textString="Low"),
 …

• How is the graphical
information stored within
the model.

• Modelica uses
annotations for this
purpose.

• Dymola typically hides
annotations and
represents them by the
symbol: a

• The visibility of
annotations can be
enabled in the Dymola
Editor.

© Dirk Zimmer, October 2014, Slide 12

Robotics and Mechatronics Centre

+ Annotations

 annotation(
Documentation(info=
 "<html>
 <p><h4>RC-Lowpass</h4></p>
 <p>This is a basic model of an
 RC-Lowpass filter.</p>
 </html>")
);

 parameter SI.Resistance
 R = 1 annotation(
 Dialog(
 group="RCSpecification“
)
);

• Annotations are also used to
store the HTML-documentation
of the model

• Also the the look of the
Parameter GUI can be
determined by annotations.

© Dirk Zimmer, October 2014, Slide 13

Robotics and Mechatronics Centre

+ Code distribution

Following classifications of aspects seems appropriate for Modelica

Physical modeling: The modeling of the physical processes that
are based on differential-algebraic equations (DAEs).

System hints: The supply of hints or information for the
simulation-system.

3D Visualization: Description of corresponding 3D-entities that
enable a visualization of the models.

GUI-Representation: Description of an icono-graphic
representation for the graphical user-interface (GUI) of the
modeling environment.

Documentation: Additional documentation that addresses to
potential users or developers.

© Dirk Zimmer, October 2014, Slide 14

Robotics and Mechatronics Centre

+ Code distribution

Pump and Valve

53%

1%

0%

34%

12%

Physical Modeling System Hints 3D Visualization
GUI-Representation Documentation

• Modelica.Thermal.
FluidHeatFlow.Examples.

PunpAndValve

© Dirk Zimmer, October 2014, Slide 15

Robotics and Mechatronics Centre

+ Code distribution

PMOS

33%

0%

0%

26%

41%

Physical Modeling System Hints 3D Visualization
GUI-Representation Documentation

D

G S

B

• Modelica.Electrical.
Analog.Semiconductors.

PMOS

© Dirk Zimmer, October 2014, Slide 16

Robotics and Mechatronics Centre

+ Code distribution

Translation

14%

3%

26%

44%

13%

Physical Modeling System Hints 3D Visualization
GUI-Representation Documentation

x

y

r

x

y

frame_a frame_b

• Modelica.Mechanics.
MultiBody.Parts.

FixedTranslation

© Dirk Zimmer, October 2014, Slide 17

Robotics and Mechatronics Centre

+ Initialization

• The set of initial conditions
depends on the circuit structure.
Hence, they must be stated
globally for each new system.

• To enable a convenient
formulation of the initial
conditions, parameters are often
offered.

• We use our RC-Circuit as an
example.

model RCFilter
 import SI = Modelica.SIunits;
 parameter SI.Resistance R = 100;
 parameter SI.Capacitance C = 1e-3;
 parameter Boolean initialize
 = false;
 parameter Real vC0;
 Modelica…Resistor Res(R=R);
 Modelica…Capacitor Cap(C=C);
 Modelica…NegativePin pin_n1;
 …
 initial equation
if initialize then
 Cap.v = vC0;
end if;

equation
 connect(pin_p1, Res.p);
 connect(Res.n, pin_p2);
 …
end RCFilter;

© Dirk Zimmer, October 2014, Slide 18

Robotics and Mechatronics Centre

+ Initialization

• Within an electric circuit, the
modeler can select the
components he wants to
initialize.

• Not all combinations are valid!

• This is a topic that will be
discussed intensively in future
lectures.

© Dirk Zimmer, October 2014, Slide 19

Robotics and Mechatronics Centre

+ The Modelica Blocks

• Not all modeling work represents physical processes.

• Often we want to model signals. This can include simple algebraic
computations or elaborate control loops.

• Modelica offers the Modelica.Blocks Library for this purpose.

name

period=period

name

+1

+1

name

+
+1

+1

name

© Dirk Zimmer, October 2014, Slide 20

Robotics and Mechatronics Centre

+ The Modelica Blocks

• Modelica Blocks features a variety of models.

• There are various signal sources and algebraic and logic elements

• Also a number of control elements is ready to be used.

name

period=period

name

+1

+1

name

+
+1

+1

name

© Dirk Zimmer, October 2014, Slide 21

Robotics and Mechatronics Centre

+ The Modelica Blocks

• Blocks can interact with physical models by the means of…

• …Sensors…

• … and Sources

name

+ -
V

name

© Dirk Zimmer, October 2014, Slide 22

Robotics and Mechatronics Centre

+

Here we use Block models..

• …to describe an rectangular
source voltage signal

• …and to compute the
difference voltage between
input and output.

Application Example

Low
Pass

RCFilter

G

V

voltageSensor

signalVoltage

+
-

pulse

period=0.5

ad
d

+1-1
ad

d +
-1 +1

© Dirk Zimmer, October 2014, Slide 23

Robotics and Mechatronics Centre

+

Here we use Block models..

• …to describe an rectangular
source voltage signal

• …and to compute the
difference voltage between
input and output.

Application Example

0.0 0.5 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
add.y

© Dirk Zimmer, October 2014, Slide 24

Robotics and Mechatronics Centre

+ The Block Class

block Add

 RealInput u1;
 RealInput u2;
 RealOutput y;

 parameter Real k1=+1;
 parameter Real k2=+1;

equation

 y = k1*u1 + k2*u2;

end Add;

• Blocks use different connectors.

• There are input connectors and
output connectors.

• Any input must be connected to
an output.

• An output can be connected to an
arbitrary number of matching
inputs.

• The input-output relation does
NOT impose a computational
causality. It might be that the
input is computed, given the
desired output.

© Dirk Zimmer, October 2014, Slide 25

Robotics and Mechatronics Centre

+ The Block Class

model Resistor
 ”Resistor Model”

 parameter SI.Resistance R;

 Pin n;
 Pin p;

 SI.Current i;
 SI.Voltage u;

equations

 u = p.v - n.v;
 n.i + p.i = 0;
 i = p.i;
 u = R*i;

end Resistor;

• A block is simply a model that has
only input and output
connectors.

• When locally checking a block, all
inputs are assumed to be known
and all outputs represent
unknowns.

• Blocks may define state-variables
So does the integrator block.

block Add

 RealInput u1;
 RealInput u2;
 RealOutput y;

 parameter Real k1=+1;
 parameter Real k2=+1;

equation

 y = k1*u1 + k2*u2;

end Add;

© Dirk Zimmer, October 2014, Slide 26

Robotics and Mechatronics Centre

+ Defining Functions

function fak

 input Integer n;
 output Integer y;

algorithm

 y := 1;

 while n>1 loop

 y := y*n;
 n := n-1;

 end while;

end fak;

• A function is similar to a block.

• Functions have an arbitrary
number of inputs and outputs.

• The order of declaration does
matter since this determines the
way the function is called.

• In contrast to blocks, functions
cannot define state-variables.
Also parameter declarations are
not allowed in functions

© Dirk Zimmer, October 2014, Slide 27

Robotics and Mechatronics Centre

+ Defining Functions

• The computation of the function
is typically expressed within an
algorithm section.

• Auxiliary variables (non-
input/output) must be declared
protected.

• The algorithm section simply
expresses a sequence of
computations as in imperative
programming languages. There
exist even loop statements.

• Modelica functions must be pure,
this means they shall not contain
side-effects. (There are exceptions)

function fak

 input Integer n;
 output Integer y;

algorithm

 y := 1;

 while n>1 loop

 y := y*n;
 n := n-1;

 end while;

end fak;

© Dirk Zimmer, October 2014, Slide 28

Robotics and Mechatronics Centre

+ Defining Functions

• The function may now be used
within the equations section of a
model.

• This is not a direct function call,
since the simulator will finally
determine if and how many times
the function will be called.

• This is also the reason why the
function must (or should) be free
of side-effects.

[…]

 z = sin(phi)*g
 z = der(w)
 w = der(phi)

[…]

© Dirk Zimmer, October 2014, Slide 29

Robotics and Mechatronics Centre

+ Conclusions

Let us conclude by a few general remarks

• Most higher-level modeling is performed graphically.

• Annotations are used to store the corr. information.

• Physical modeling is extended by blocks and functions.

• Blocks are often used to design a controller.

• Algorithmic parts are supported by means of functions.

© Dirk Zimmer, October 2014, Slide 30

Robotics and Mechatronics Centre

+ Outlook

• Next lecture, we are going to examine the compilation of Modelica
Models.

Questions?

	Virtual Physics�Equation-Based Modeling
	Outline
	Graphical Modeling
	The Modeling Layers
	Inner Graphical Layer
	Textual Layer
	Outer Graphical Layer
	Application Example
	Application Example
	Annotations
	Annotations
	Annotations
	Code distribution
	Code distribution
	Code distribution
	Code distribution
	Initialization
	Initialization
	The Modelica Blocks
	The Modelica Blocks
	The Modelica Blocks
	Application Example
	Application Example
	The Block Class
	The Block Class
	Defining Functions
	Defining Functions
	Defining Functions
	Conclusions
	Outlook
	Questions?

