
Virtual Physics 
Equation-Based Modeling 

 
Dr. Dirk Zimmer  

 

German Aerospace Center (DLR), Robotics and Mechatronics Centre 

 

TUM, October 21, 2014 

Modeling in Modelica – Graphical Modeling 

model SimpleCircuit ”A simple RC circuit” 
  import SI = Modelica.SIunits; 
  parameter SI.Capacitance C = 0.001 ”Capacity”; 
  parameter SI.Resistance = 100  ”Resistance”; 
  parameter SI.Voltage V0 = 10 ”Source Voltage”; 
  SI.Current i ”Current” ; SI.Voltage uC 
 ”Capacitor Voltage”; 
initial equation 
  uC = 0; 
equations 
  V0-uC = R*i; 
  der(uC)*C = i; 
end SimpleCircuit; 
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In this lecture, the language 
Modelica is officially introduced. 

• The graphical modeling layers in 
Dymola 

• Annotations 
• Parameter GUI 
• Initialization via GUI 
• Modelica Blocks 
• Inputs / Outputs 
• Blocks and Functions 

 

Outline 
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So far, we have only looked at 
the textual side of modeling. 

 
• Using a modern modeling 

environment like Dymola, 
most modeling is performed 
graphically. 
 

• Textual modeling is only 
done  for the lower level 
tasks. 

Graphical Modeling 
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To this end, Dymola offers three 
distinct modeling layers. 

 

• The inner textual 
representation (1) 
 

• The inner graphical 
representation (2) 

 

• The outer graphical 
representation (3) 

The Modeling Layers 

1 2 3 
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Let us model an RC-Filter. 
 

• We start with the inner 
graphical representation. 

 

• Here we model the actual 
sub-circuit 

 

Inner Graphical Layer 
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Let us model an RC-Filter. 
 

• On the textual layer, we 
provide two parameters for 
the resistor and the capacitor 

 

 

 

Textual Layer 

model RCFilter 
  import SI = Modelica.SIunits; 
  parameter SI.Resistance R = 100; 
  parameter SI.Capacitance C = 1e-3; 
 
  Modelica…Resistor Res(R=R);    
  Modelica…Capacitor Cap(C=C);    
  Modelica…NegativePin pin_n1;  
  Modelica…NegativePin pin_n2;  
  Modelica…PositivePin pin_p1;  
  Modelica…PositivePin pin_p2;  
equation  
  connect(pin_p1, Res.p);      
  connect(Res.n, pin_p2);      
  connect(Cap.p, Res.n);          
  connect(Cap.n, pin_n2);     
  connect(pin_n1, pin_n2);                        
end RCFilter; 
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Let us model an RC-Filter. 
 

• The outer graphical 
representation already 
contains the connectors 

 

• Now we design a suitable 
symbol for our model. 

 

• Now it is ready to be used. 

 

Outer Graphical Layer 

Low
Pass
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Let us model an RC-Filter. 
 

• Here is an application of our 
RC-Filter component. 

 

• The parameters can be set by 
clicking on the component. 

 

 C = 0.01 

 R = 5 

 

Application Example 
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Simulation Result 
 

Application Example 
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+ Annotations 

• How is the graphical 
information stored within 
the model. 

• Modelica uses 
annotations for this 
purpose.     

• Dymola typically hides 
annotations and 
represents them by the 
symbol: a 

• The visibility of 
annotations can be 
enabled in the Dymola 
Editor. 

model RCFilter 
  import SI = Modelica.SIunits; 
  parameter SI.Resistance R = 100; 
  parameter SI.Capacitance C = 1e-3; 
 
  Modelica…Resistor Res(R=R) a;    
  Modelica…Capacitor Cap(C=C) a;    
  Modelica…NegativePin pin_n1 a;  
  Modelica…NegativePin pin_n2 a;  
  Modelica…PositivePin pin_p1 a;  
  Modelica…PositivePin pin_p2 a;  
equation  
  connect(pin_p1, Res.p) a;     
  connect(Res.n, pin_p2) a;       
  connect(Cap.p, Res.n) a;             
  connect(Cap.n, pin_n2) a;        
  connect(pin_n1, pin_n2) a;                           
end RCFilter; 
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+ Annotations 

annotation(Icon(graphics={ 
  Rectangle( 
    extent={{-80,80},{80,-80}}, 
    lineColor={0,0,255}, 
    fillColor={255,255,255}, 
    fillPattern=FillPattern.Solid), 
  Line( 
    points={{-90,60},{-60,60}, 
            {-60,-60},{-90,-60}}, 
    color={0,0,255}, 
    smooth=Smooth.None), 
  Line( points={{90,60},{60,60}, 
   {60,-60},{90,-60}}, 
    color={0,0,255}, 
    smooth=Smooth.None), 
  Text(extent={{-60,60},{60,2}}, 
     lineColor={0,0,255}, 
     textString="Low"), 
   … 

• How is the graphical 
information stored within 
the model. 

• Modelica uses 
annotations for this 
purpose.     

• Dymola typically hides 
annotations and 
represents them by the 
symbol: a 

• The visibility of 
annotations can be 
enabled in the Dymola 
Editor. 
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+ Annotations 

 annotation( 
Documentation(info= 
  "<html> 
 <p><h4>RC-Lowpass</h4></p> 
 <p>This is a basic model of an 
    RC-Lowpass filter.</p> 
  </html>") 
); 
 
 
 parameter SI.Resistance  
   R = 1 annotation( 
    Dialog( 
     group="RCSpecification“ 
     ) 
    ); 
 
 
 
 
 

• Annotations are also used to 
store the HTML-documentation 
of the model 

 

• Also the the look of the 
Parameter GUI can be 
determined by annotations. 
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+ Code distribution 

Following classifications of aspects seems appropriate for Modelica 
 

Physical modeling: The modeling of the physical processes that 
are based on differential-algebraic equations (DAEs).  
 
System hints: The supply of hints or information for the 
simulation-system.  
 
3D Visualization: Description of corresponding 3D-entities that 
enable a visualization of the models. 
 
GUI-Representation: Description of an icono-graphic 
representation for the graphical user-interface (GUI) of the 
modeling environment. 
 
Documentation: Additional documentation that addresses to 
potential users or developers. 
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+ Code distribution 
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+ Code distribution 
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+ Code distribution 

Translation
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+ Initialization 

• The set of initial conditions 
depends on the circuit structure. 
Hence, they must be stated 
globally for each new system. 

 

• To enable a convenient 
formulation of the initial 
conditions, parameters are often 
offered. 

 

• We use our RC-Circuit as an 
example. 

 

 

 

model RCFilter 
  import SI = Modelica.SIunits; 
  parameter SI.Resistance R = 100; 
  parameter SI.Capacitance C = 1e-3; 
  parameter Boolean initialize 
    = false; 
  parameter Real vC0; 
  Modelica…Resistor Res(R=R);    
  Modelica…Capacitor Cap(C=C);    
  Modelica…NegativePin pin_n1;  
  … 
 initial equation  
if initialize then 
  Cap.v = vC0; 
end if; 
 
equation  
  connect(pin_p1, Res.p);      
  connect(Res.n, pin_p2);      
  …                        
end RCFilter; 
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+ Initialization 

• Within an electric circuit, the 
modeler can select the 
components he wants to 
initialize. 

 

• Not all combinations are valid! 

 

• This is a topic that will be 
discussed intensively in future 
lectures. 

 



© Dirk Zimmer, October 2014, Slide 19 

Robotics and Mechatronics Centre 

+ The Modelica Blocks 

• Not all modeling work represents physical processes. 
 

• Often we want to model signals. This can include simple algebraic 
computations or elaborate control loops. 
 

• Modelica offers the Modelica.Blocks Library for this purpose. 
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+ The Modelica Blocks 

• Modelica Blocks features a variety of models. 
 

• There are various signal sources and algebraic and logic elements 
 

• Also a number of control elements is ready to be used. 
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+ The Modelica Blocks 

• Blocks can interact with physical models by the means of… 
 

• …Sensors… 
 

• … and Sources 
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Here we use Block models.. 
 

• …to describe an rectangular 
source voltage signal 

 

• …and to compute the 
difference voltage between 
input and output. 

 

Application Example 
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Here we use Block models.. 
 

• …to describe an rectangular 
source voltage signal 

 

• …and to compute the 
difference voltage between 
input and output. 

 

Application Example 
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+ The Block Class 

block Add  
  
 
  RealInput u1; 
  RealInput u2; 
  RealOutput y; 
 
 
  parameter Real k1=+1; 
  parameter Real k2=+1; 
 
 
equation  
 
  y = k1*u1 + k2*u2; 
 
end Add; 
 
 
 

• Blocks use different connectors. 

• There are input connectors and 
output connectors. 

• Any input must be connected to 
an output. 

• An output can be connected to an 
arbitrary number of matching 
inputs. 

• The input-output relation does 
NOT impose a computational 
causality. It might be that the 
input is computed, given the 
desired output. 
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+ The Block Class 

model Resistor 
 ”Resistor Model” 
 
  parameter SI.Resistance R; 
 
  Pin n;  
  Pin p;  
 
  SI.Current i; 
  SI.Voltage u;  
 
 
equations 
 
  u = p.v - n.v; 
  n.i + p.i = 0; 
  i = p.i; 
  u = R*i;    
 
end Resistor; 
 

• A block is simply a model that has 
only input and output 
connectors. 

 

• When locally checking a block, all 
inputs are assumed to be known 
and all outputs represent 
unknowns. 

 

• Blocks may define state-variables 
So does the integrator block. 

block Add  
  
 
  RealInput u1; 
  RealInput u2; 
  RealOutput y; 
 
 
  parameter Real k1=+1; 
  parameter Real k2=+1; 
 
 
equation  
 
  y = k1*u1 + k2*u2; 
 
end Add; 
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+ Defining Functions 

function fak 
 
  input Integer n;  
  output Integer y;  
 
 
 
algorithm 
 
  y := 1; 
 
  while n>1 loop 
 
    y := y*n; 
    n := n-1; 
 
  end while;    
 
end fak; 
 

• A function is similar to a block. 

 

• Functions have an arbitrary 
number of inputs and outputs. 

 

• The order of declaration does 
matter since this determines the 
way the function is called. 

 

• In contrast to blocks, functions 
cannot define state-variables. 
Also parameter declarations are 
not allowed in functions 
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+ Defining Functions 

• The computation of the function 
is typically expressed within an 
algorithm section. 

• Auxiliary variables (non-
input/output) must be declared 
protected. 

• The algorithm section simply 
expresses a sequence of 
computations as in imperative 
programming languages. There 
exist even loop statements. 

• Modelica functions must be pure, 
this means they shall not contain 
side-effects. (There are exceptions) 

 

function fak 
 
  input Integer n;  
  output Integer y;  
 
 
 
algorithm 
 
  y := 1; 
 
  while n>1 loop 
 
    y := y*n; 
    n := n-1; 
 
  end while;    
 
end fak; 
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+ Defining Functions 

• The function may now be used 
within the equations section of a 
model. 

 

• This is not a direct function call, 
since the simulator will  finally 
determine if and how many times 
the function will be called. 

 

• This is also the reason why the 
function must (or should) be free 
of side-effects. 

 
 
[…] 
 
 z = sin(phi)*g 
 z = der(w) 
 w = der(phi) 
 
 
[…] 
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+ Conclusions 

Let us conclude by a few general remarks 

• Most higher-level modeling is performed graphically. 

 

• Annotations are used to store the corr. information. 

 

• Physical modeling is extended by blocks and functions. 

 

• Blocks are often used to design a controller. 

 

• Algorithmic parts are supported by means of functions. 
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+ Outlook 

• Next lecture, we are going to examine the compilation of Modelica 
Models. 

 

 



Questions? 
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