Virtual Physics Equation-Based Modeling

TUM, November 18, 2014

2D-Mechanical Systems: Kinematic Loops

Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre

Initialization

 So far, we have only cared about the equations that describe the dynamic behavior of the system.

- But we need to define a set of initial equations too.
- Whereas the dynamic equations can be generically formulated in a way that the components can be almost arbitrarily connected, this is unfortunately not the case for the initial equations.
- In general, they need to be manually set up for each specific system.

Initialization

- However, what we can do is to put the modeler into a position so that he can set up the initial state of the system in a convenient way.
- To this end, we create parameterized initial equations for some of our components.
- Usually, the joints are a good place to set the initial equations of a system.

Initializing the Revolute Joint

Let us add initial equations to the revolute joint:

First we add parameters for the initial values.

Then we can add the correspondent initial equations.

```
model Revolute
  Interfaces.Frame_a frame_a;
  Interfaces.Frame_a frame_a;
  SI.Angle phi
  SI.Angular Velocity w;
  SI.AngularAcceleration z;
  parameter SI.Angle phi start = 0;
  parameter SI.AngularVelocity w start=0;
initial equation
  phi = phi_start;
  w = w start;
equation
  frame_a.phi + phi = frame_b.phi;
  w = der(phi);
  z = der(w);
  frame_a.x = frame b.x;
  frame_a.y = frame_b.y;
  [ ... ]
end Revolute
```

Initializing the Revolute Joint

Let us add initial equations to the revolute joint:

 But it is not clear, if the modeler really wants to state such equations.

Thus, we put them in conditional form.

```
model Revolute
  Interfaces.Frame_a frame_a;
  Interfaces. Frame a frame a;
  SI.Angle phi
  SI.Angular Velocity w;
  SI.AngularAcceleration z;
  parameter SI.Angle phi_start = 0;
  parameter SI.AngularVelocity w start=0;
  parameter Boolean initialize = false;
initial equation
  if initialize then
    phi = phi_start;
    w = w_start;
  end if:
equation
  frame_a.phi + phi = frame_b.phi;
  w = der(phi);
  z = der(w);
  frame_a.x = frame_b.x;
  frame_a.y = frame_b.y;
  [ ... ]
end Revolute
```

Initialization

 In this way, we create conditional initial equation sections for a number of components.

• For each of these component we may now use the parameter menu to set the initial values.

This way of providing a functionality for initialization is still rudimentary.
 Look at the MulitBody library to see a more elaborate version of it.

Let us model a piston engine:

• Although the model has 4 joint elements, it has only 1 degree of freedom. So it is enough to initialize one of the four joints.

• Model Diagram:

• Model Diagram:

Let us model a piston engine:

- If we initialize the position of the piston, two possible solutions exist.
- We have to solve a non-linear system of equations.

Let us model a piston engine:

The same holds for the initialization via the disc rotation angle.

Let us model a piston engine:

 However, if we attempt to initialize both in order to clarify the solution, we get an overdetermined system of equations.

Providing Start Values

- Dymola will solve the non-linear equation system by an iterative solver.
- Which solution it will find (if any) depends on the start values of the iterative solver.
- It is possible to suggest start values without enforcing an initialization constraint by using the attributes of Real variables.

- Real x(start=10,fixed = false)
 means that 10 is a suggested start value for an iterative solver.
- Real x(start=10, fixed = true)
 means that 10 is the initial value.

Let us model a piston engine:

- So I could try to initialize one joint with fixed=true and the other joint with fixed = false;
- This will do the job. Nevertheless be aware that there is no guarantee that we will get the right solution.

Kinematic Loops

- The model of the piston engine represented an example that contained fewer degrees of freedom than the number of joint elements would suggest.
- Such systems contain a kinematic loop.

Here is an example where the loop is more evident.

Kinematic Loops: Example

Here is an example where the actual loop is more evident.

Kinematic Loops: Example

Here is an example where the actual loop is more evident.

Kinematic Loops: Example

• Here is an example where the actual loop is more evident.

Kinematic Loops: DOF

- How do we determine the degrees of freedom?
- Each joint adds one degree of freedom. There are 5 joints, so there are 5 degrees of freedom.
- The closure of a kinematic loop, imposes 3 holonomic constraints.

```
x1 = x2;

y1 = y2;

\varphi 1 = \varphi 2;
```

- Hence, each loop decreases the degrees of freedom by 3 (in planar mechanical systems)
- In our example, 5-3 = 2degrees of freedom remain.

Kinematic Loops: Initialization

Here is an example where the actual loop is more evident.

Kinematic Loops: States

- When there remain only 2 degrees of freedom, by which state variables are they represented?
- The attached pendulum has its usual states. The angle ϕ and the angular velocity ω of revolute3
- But which states represent the state of the loop? Here is what Dymola tells you in the translation log of the model:

```
There are 2 sets of dynamic state selection.
```

From set 1 there is 1 state to be selected from:

```
revolute.phi
revolute2.phi
springDamper.s_rel
```

From set 2 there is 1 state to be selected from:

body.w
revolute2.w

Dynamic State Selection

- What is dynamic state-selection?
- After all, what does it mean to select states?
- All joints formulate differential equations of their motion, but only a few of these differential equations seem to end up in the explicit state-space form.

$$F(\mathbf{x}_{p},d\mathbf{x}_{p}/dt,\mathbf{u},t)=0 \qquad \qquad \mathbf{d}\mathbf{x}/dt=f(\mathbf{x},\mathbf{u},t)$$

- \rightarrow **x** is only a subset of **x**_p
- There seems to be an important subject in the translation of models that we have missed so far.

- So far we have assumed, that every variable that occurred as timederivative, represents a state and is assumed to be known:
- Example in an electric Capacitor:
 i = C*der(u) → u represents a state and is known.
- However, this holds not always true. Let us take a look at a simple counter example:

• Let us model this circuit by the following set of equations:

$$u_R = R*i$$
 $i_{C1} = C1 * du_{C1}/dt$
 $i_{C2} = C2 * du_{C2}/dt$
 $v_G = 0;$
 $v_S = 10;$
 $v_C = v_G + u_{C1}$
 $v_C = v_S - u_R$
 $i_{C1} + i_{C2} = i$

Let us model this circuit by the following set of equations:

$$u_R = R*i$$
 $i_{C1} = C1 * du_{C1}/dt$
 $i_{C2} = C2 * du_{C2}/dt$
 $v_G = 0;$
 $v_S = 10;$
 $v_C = v_G + u_{C1}$
 $v_C = v_S - u_R$

 $i_{C1} + i_{C2} = i$

• As usual, we assume u_{C1} and u_{C2} to be known.

Let us start with forward causalization.

Dynamic State Selection

$$v_{G} := 0;$$
 $v_{S} := 10;$
 $v_{C} := v_{G} + u_{C1}$

Residual = $v_{G} + u_{C2} - v_{C}$
 $u_{R} = R*i$
 $i_{C1} = C1*du_{C1}/dt$
 $i_{C2} = C2*du_{C2}/dt$
 $v_{C} = v_{S} - u_{R}$

 $i_{C1} + i_{C2} = i$

• As usual, we assume u_{C1} and u_{C2} to be known.

Let us start with forward causalization.

A residual equation is generated, but there
is no iteration variable. The system seems to
be overdetermined. We encounter a
structural singularity.

$$v_{G} := 0;$$
 $v_{S} := 10;$
 $v_{C} := v_{G} + u_{C1}$

Residual = $v_{G} + u_{C2} - v_{C}$
 $u_{R} = R*i$
 $i_{C1} = C1*du_{C1}/dt$
 $i_{C2} = C2*du_{C2}/dt$
 $v_{C} = v_{S} - u_{R}$
 $i_{C1} + i_{C2} = i$

 In order to remove this structural singularity, we have to apply the Pantelides Algorithm:

$$v_{G} := 0;$$
 $v_{S} := 10;$
 $v_{C} := v_{G} + u_{C1}$
 $v_{C} := v_{G} + u_{C1}$
 $v_{C} := v_{G} + u_{C2} - v_{C}$
 $v_{R} = R*i$
 $v_{C} := C1*du_{C1}/dt$
 $v_{C} := C2*du_{C2}/dt$
 $v_{C} := v_{S} - u_{R}$
 $v_{C} := v_{C} - v_{C}$

- In order to remove this structural singularity, we have to apply the Pantelides Algorithm:
- To this end, we assume one of the affected states to be unknown (we gain one unknown)

$$v_{G} := 0;$$
 $v_{S} := 10;$
 $v_{C} := v_{G} + u_{C1}$
 $0 = v_{G} + u_{C2} - v_{C}$
 $d0/dt = d(v_{G} + u_{C2} - v_{C})/dt$
 $u_{R} = R*i$
 $i_{C1} = C1*du_{C1}/dt$
 $i_{C2} = C2*du_{C2}/dt$
 $v_{C} = v_{S} - u_{R}$
 $i_{C1} + i_{C2} = i$

- In order to remove this structural singularity, we have to apply the Pantelides Algorithm:
- To this end, we assume one of the affected states (here: u_{C2}) to be unknown (we gain one unknown)

 And add as additional equation the time derivative of the constraint.

$$v_{G} := 0;$$

$$v_s := 10;$$

$$v_C := v_G + u_{C1}$$

$$0 = v_G + u_{C2} - v_C$$

$$d0/dt = d(v_G + u_{C2} - v_C)/dt$$

$$u_R = R*i$$

$$i_{C1} = C1*du_{C1}/dt$$

$$i_{C2} = C2*du_{C2}/dt$$

$$v_C = v_S - u_R$$

$$i_{C1} + i_{C2} = i$$

The differentiated equation

$$d0/dt = d(vG + uC2 - vC)/dt$$

can be transformed to...

$$0 = dvG/dt + duC2/dt - dvC/dt$$

 The derivatives dvG/dt and dvC/dt are yet unknown. We have to differentiate further equations.

$$v_G := 0;$$
 $dv_G/dt := 0;$
 $v_S := 10;$
 $v_C := v_G + u_{C1}$
 $dv_C/dt = dv_G/dt + du_{C1}/dt$
 $0 = v_G + u_{C2} - v_C$
 $0 = dv_G/dt + du_{C2}/dt - dv_C/dt$
 $u_R = R*i$
 $i_{C1} = C1*du_{C1}/dt$
 $i_{C2} = C2*du_{C2}/dt$
 $v_C = v_S - u_R$
 $i_{C1} + i_{C2} = i$

- Adding an equation in differentiated form may require further derivation of further variables and equations
- Here, we had two add two further variables (dv_G/dt, dv_C/dt) and two equations.

 Now we can continue to causalize the system...

$$v_G := 0;$$
 $dv_G/dt := 0;$
 $v_S := 10;$
 $v_C := v_G + u_{C1}$
 $u_{C2} := v_C - v_G$
 $u_R := v_S - v_C$
 $i := u_R/R$
 $0 = dv_G/dt + du_{C2}/dt - dv_C/dt$
 $dv_C/dt = dv_G/dt + du_{C1}/dt$
 $i_{C1} = C1*du_{C1}/dt$
 $i_{C2} = C2*du_{C2}/dt$
 $i_{C1} + i_{C2} = i$

- There remain 5 equations non-causalized.
 Evidently, there is an algebraic loop.
- This loop represents the division of current among the two capacitors.
- In order to break the loop, we select i_{C1} as tearing variable and causalize.

$$v_G := 0;$$
 $dv_G/dt := 0;$
 $v_S := 10;$
 $v_C := v_G + u_{C1}$
 $u_{C2} := v_C - v_G$
 $u_R := v_S - v_C$
 $i := u_R/R$
 $i_{C1} := iteration variable$
 $du_{C1}/dt := i_{C1}/C1$
 $dv_C/dt := dv_G/dt + du_{C1}/dt$
 $i_{C2} := i - i_{C1}$
 $du_{C2}/dt := i_{C2}/C2$
 $0 = dv_G/dt + du_{C2}/dt - dv_C/dt$

- There remain 5 equations non-causalized.
 Evidently, there is an algebraic loop.
- This loop represents the division of current among the two capacitors.
- In order to break the loop, we select i_{C1} as tearing variable and causalize.
- Finally, we get one residual equation.
- Structural singularities often generate algebraic loops.

Pantelides: Summary

- Initially, all potential state-variables are assumed to be known.
- For each constraint equation between potential state-variables, we have to de-select one state (assuming it to be unknown): we gain one unknown.
- Then, we differentiate the constraint equation. To this end, we need algorithmic (symbolic) differentiation: we gain one equation.
- The differentiation may involve further equations and variables.
- Finally, algebraic loops are likely to result.

Pantelides: Illustration

Let us illustrate the ideas behind the Pantelides Algorithm:

Pantelides: Illustration

• Here, we have chosen **a** as state-variable. But we could choose **b** as well.

State Selection

- Does it matter, if we choose a or b as state variable?
- If the constraint between **a** and **b** is linear (with constant coefficients), it does not matter.

 But otherwise an inadequate state-selection can lead to numerical singularities during the simulation.

State Selection

- So what is the situation like for the kinematic loop example?
- Obviously, the constraints are highly non-linear.
- Dymola tells us there is a non-linear system of size 20 that can be reduced to 3 iteration variables.

Singularities

 If Dymola would just blindly choose s and v of the prismatic joint to be state-variables a singularity could occur.

- When the prismatic joint is stretched to the maximum length: v = 0.
- However, the loop is not necessarily at rest! We just lost all information about the velocity of the loop!
- If we choose, phi and w of the wall revolute-joint to be the states, the problem disappears. But Dymola cannot know this. This is expert knowledge.

Dynamic State Selection

- Due to the non-linear constraints, Dymola cannot eliminate potential state-variables.
- Instead, a set of redundant state-variables is chosen and the best subset is chosen dynamically during the simulation.
- However, this is demanding and potentially time-consuming.
- Can't we help Dymola?

Manual State-Selection

- In Modelica there is the StateSelect Attribute.
- We can determine it for any Real variable. Example:

```
SI.Angle phi(stateSelect=StateSelect.always)
```

There are five different levels available for state selection:

```
StateSelect.always
StateSelect.prefer
StateSelect.default
StateSelect.avoid
StateSelect.never
```

- StateSelect.prefer is used to show that this a state-variable that shall be taken in case of linear constraints.
- StateSelect.always is used to show that this a state-variable that shall be taken even in case of non-linear constraints

Manual State-Selection

• We can apply the StateSelect Attribute in the modifier:

- Now, there is no dynamic state-selection anymore.
- Also the non-linear system of equations could be further simplified.
- Simulation is much faster.

Enforcing States for the Revolute

Robotics and Mechatronics Centre

It is more convenient when the state selection is integrated into the model:

 Hence we add a Boolean parameter "enforceStates".

And couple it with the attribute.

```
model Revolute
  Interfaces.Frame_a frame_a;
  Interfaces. Frame a frame a;
  SI.Angle phi (stateSelect =
  if enforceStates then StateSelect.always
  else StateSelect.prefer);
  SI.AngularVelocity w(stateSelect =
  if enforceStates then StateSelect.always
  else StateSelect.prefer);
  SI.AngularAcceleration z;
  parameter SI.Angle phi_start = 0;
  parameter SI.AngularVelocity w start=0;
  parameter Boolean initialize = false;
  parameter Boolean enforceStates = false;
[ ... ]
equation
  frame_a.phi + phi = frame_b.phi;
  w = der(phi);
  z = der(w);
  frame_a.x = frame_b.x;
  frame a.y = frame b.y;
  [ ... ]
end Revolute
```

Definition: Index

 The index describes the level of difficulty to transform a given system from implicit DAE-form into explicit ODE-form.

$$F(\mathbf{x}_{p},d\mathbf{x}_{p}/dt,\mathbf{u},t)=0 \qquad \qquad \mathbf{d}\mathbf{x}/dt=f(\mathbf{x},\mathbf{u},t)$$

- An index-0 system represents a system that can be brought into ODEform simply by permuting its equations.
- The *differential index* represents the maximum number a variable needs to be differentiated in order to retrieve an index-0 system.
- The *perturbation index* is equal to the differential index if the system contains no algebraic loops. Otherwise it is larger by one.
- Typically, the term index refers to the perturbation index.

- Differential Index: 0
- Perturbation Index: 0

Differential Index: 0

Perturbation Index: 1

The two parallel resistor create an algebraic loop for the division of current.

Differential Index: 1

• Perturbation Index: 1

The voltage source determines the voltage at the capacitor.

The voltage must be differentiated in order to determine the current through the capacitor.

Differential Index: 1

Perturbation Index: 2

Both voltages of the capacitors are equal. Only one differential equation is used for time-integration. The system needs to be differentiated once.

The two parallel capacitors create an algebraic loop for the division of current.

Exercise

 Set up the equations for each circuit and transform them to ODE-Form Apply Tearing-Algorithm and Pantelides if necessary

Pantelides: Higher Index

• Beware! Certain system may require multiple differentiations...

Pantelides: Higher Index

- Multiple differentiations lead to a higher differential index.
- Systems with a perturbation index of 3 and higher are called: higher-index systems

Most mechanical systems are higher-index systems.

Questions?