

3D Mechanics

Essentially, there are 3 major difficulties we have to cope with:

- There are multiple ways to express the orientation of a body in three dimensional space.
- In planar mechanics, all potential variables could be expressed in one common coordinate system: The inertial system. In 3Dmechanics, such an approach is unfeasible.
- The set of connector variables contains a redundant set of variables. This causes severe problems for the formulation of kinematic loops.

© Dirk Zimmer, December 2014, Slide

3D Mechanics

In this lecture, we look at the modeling of 3D mechanical systems.

- 3D mechanical models look superficially just like planar mechanical models. There are additional types of joints, but other than that, there seem to be few surprises.
- Yet, the seemingly similar appearance is deceiving. There are a substantial number of complications that the modeler has to cope with when dealing with 3D mechanics. These are the subject of this lecture.

© Dirk Zimmer, December 2014, Slide

Orientation

There are 4 major variants to express the orientation of an object in 3D

- The rotation matrix
- · Planar rotation
- Cardan angles
- Quaternions

The cardan angles $(\varphi_x, \varphi_y, \varphi_z)$

- Unfortunately, the decomposition into separate yields a singularity at $\varphi_{\rm v}$ = 90°. The other two rotation axes are then aligned and there are infinitely many solutions.
- · So cardan angles are only useful, if one can make sure this case won't appear during simulation time.
- The sequence of axis rotation can be chosen arbitrarily. Other sequences are of course possible as well and each valid sequence has a specific point where the systems becomes singular.

$$\mathbf{R}_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & cos(\varphi_{x}) & sin(\varphi_{x}) \\ 0 & -sin(\varphi_{x}) & cos(\varphi_{x}) \end{pmatrix}$$

$$\mathbf{R}_{y} = \begin{pmatrix} \cos(\varphi_{y}) & 0 & -\sin(\varphi_{y}) \\ 0 & 1 & 0 \\ \sin(\varphi_{y}) & 0 & \cos(\varphi_{y}) \end{pmatrix}$$

$$\mathbf{R}_{z} = \begin{pmatrix} \cos(\varphi_{z}) & \sin(\varphi_{z}) & 0 \\ -\sin(\varphi_{z}) & \cos(\varphi_{z}) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\mathbf{R} = \mathbf{R}_{\mathbf{z}} \cdot \mathbf{R}_{\mathbf{v}} \cdot \mathbf{R}_{\mathbf{x}}$

The Cardan Angles (φ_x , φ_y	, φ_z)
The cardan angles $(arphi_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	
A non-redundant form to describe the orientation are cardan angles.	$\mathbf{R}_{\mathbf{x}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & cos(\varphi_{\mathbf{x}}) & sin(\varphi_{\mathbf{x}}) \\ 0 & -sin(\varphi_{\mathbf{x}}) & cos(\varphi_{\mathbf{x}}) \end{pmatrix}$
 This technique decomposes the rotation into three subsequent rotations around predetermined axes. 	$\mathbf{R}_{\mathbf{y}} = \left(\begin{array}{ccc} cos(\varphi_{\mathbf{y}}) & 0 & -sin(\varphi_{\mathbf{y}}) \\ 0 & 1 & 0 \\ sin(\varphi_{\mathbf{y}}) & 0 & cos(\varphi_{\mathbf{y}}) \end{array} \right)$
In this case: first x, then y, finally z.	$\mathbf{R}_z = \begin{pmatrix} \cos(\varphi_z) & \sin(\varphi_z) & 0\\ -\sin(\varphi_z) & \cos(\varphi_z) & 0\\ 0 & 0 & 1 \end{pmatrix}$
illially 2.	$\mathbf{R} = \mathbf{R}_{\mathbf{z}} \cdot \mathbf{R}_{\mathbf{y}} \cdot \mathbf{R}_{\mathbf{x}}$
	© Dirk Zimmer, December 2014, Slide 7

The Planar Rotation (n, φ)

+ DLR
Robotics and Mechatronics Centre

The planar rotation (\mathbf{n}, φ) :

- Every rotation can be regarded as a planar rotation with the angle φ around a certain axis given by a unit vector \mathbf{n} .
- We therefore have 4 variables and one constraint equation for the unit vector.

$$\mathbf{R} = \mathbf{n}\mathbf{n}^T + (I - \mathbf{n}\mathbf{n}^T)\cos(\varphi) - \tilde{\mathbf{n}}\sin(\varphi)$$

© Dirk Zimmer, December 2014, Slide

Quaternions Q

- Quaternions are an extension of complex numbers and offer a robust way to describe any rotation. A quaternion number consists of one real and three imaginary components, denoted by i, j and k.
- \bullet $\;$ The imaginary components can be summarized by a vector u.

$$Q = c + ui + vj + wk$$
. = $c + \mathbf{u}$

• The multiplication rules for the imaginary components are as follows:

$$ij = k$$
; $ji = -k$; $i^2 = -1$
 $jk = i$; $kj = -i$; $j^2 = -1$
 $ki = j$; $ik = -j$; $k^2 = -1$

© Dirk Zimmer, December 2014, Slide 1:

The Planar Rotation (n, φ)

The planar rotation (\mathbf{n}, φ) :

- Unfortunately, also the planar rotation method is not always invertible in a unique fashion. A null rotation does not have a well defined axis of rotation.
- Hence, this method should only be used if the axis of rotation is always known, as in a revolute joint.

 $\mathbf{R} = \mathbf{n}\mathbf{n}^T + (I - \mathbf{n}\mathbf{n}^T)\cos(\varphi) - \tilde{\mathbf{n}}\sin(\varphi)$ Matrix notation of the cross product

$$\mathbf{a} \times \mathbf{b} = \mathbf{\tilde{a}b}$$

$$\tilde{\mathbf{a}} = \left(\begin{array}{ccc} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array} \right)$$

© Dirk Zimmer, December 2014, Slide 1

Quaternions Q

• So the product of two quaternions can be written as:

$$QQ' = (c + \mathbf{u})(c' + \mathbf{u}') = (cc' - \mathbf{u} \cdot \mathbf{u}') + (\mathbf{u} \times \mathbf{u}') + c\mathbf{u}' + c'\mathbf{u}$$

• The complement of a quaternion number is defined to be:

$$\bar{O} = c + \overline{\mathbf{u}} = c - \mathbf{u}$$

 The product of a quaternion number with its complement results in its norm:

$$|Q| = c^2 + |\mathbf{u}|^2$$

• A unit quaternion is a quaternion of norm 1.

$$|Q| = c^2 + |\mathbf{u}|^2 = 1$$

Quaternions Q

• According to the trigonometric Pythagoras...

$$\cos(\varphi/2)^2 + \sin(\varphi/2)^2 = 1$$

• there is an angle φ for every unit quaternion such that:

$$c = cos(\varphi/2)$$
 and $|\mathbf{u}| = sin(\varphi/2)$

- It is now evident how a unit quaternion can be used to describe an
 orientation. The idea is related to the planar rotation. The imaginary
 component u describes the axis, and the length of the axis describes
 the rotation angle.
- The rotation matrix is then defined by:

$$\mathbf{R} = 2\mathbf{u}\mathbf{u}^T + 2(\tilde{\mathbf{u}} \cdot c) + 2c^2\mathbf{I} - \mathbf{I}$$

© Dirk Zimmer, December 2014, Slide 1

Motion in 3D

- In planar mechanics, ω was the derivative of φ .
- In 3D mechanics, this is not so easy anymore. ω represents a vector.
- $|\omega|$ represents the actual angular velocity
- $\omega/|\omega|$ is the unit-vector of the rotation axis.
- ω can either be resolved w.r.t. the inertial frame (ω_0) or w.r.t to the body frame (ω_{hodw}) .
- The body frame is the coordinate system attached to the body.

© Dirk Zimmer, December 2014, Slide 1

Selection of Method

- So which of the four methods shall we apply?
- . The answer is: all of them
- · The rotational matrix is highly redundant but purely linear.
 - → It is used in the connector
- Cardan angles can be used for a spherical joint if the motion is limited to non-singular (or ill-conditioned) areas.
 - → Free rotational motion, spherical joint
- Planar rotation is used when the rotational axis is known.
 - → Revolute Joint
- Quaternions are the methods that avoids any singularity with the slightest degree of redundancy. (But leads to non-linear equations)
 - → Free rotational motion, spherical joint

© Dirk Zimmer, December 2014, Slide 1-

Motion in 3D: Rotation Matrix

• The rotational matrix is the one to integrate:

$$\tilde{\boldsymbol{\omega}}_{0}\mathbf{R} = \mathbf{R}\tilde{\boldsymbol{\omega}}_{bodv} = \dot{\mathbf{R}}$$

• This generates 9 differential equations and is thus never used.

Motion in 3D: Cardan Angles

• The rotation matrix **R** results out of a planar rotation:

$$\mathbf{R}\,\boldsymbol{\omega}_0 = \boldsymbol{\omega}_{body} = \mathbf{n}\cdot\dot{\boldsymbol{\varphi}}$$

• 1 differential equations

© Dirk Zimmer, December 2014, Slide 1

Motion in 3D: Quaternions

• The rotation matrix **R** results out of the quaternion rotation:

$$\omega_{body} = 2 \begin{pmatrix} c & -w & v & u \\ w & c & -u & v \\ -v & u & c & w \end{pmatrix} \cdot \begin{pmatrix} \dot{c} \\ \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix}$$

$$\omega_0 = 2 \begin{pmatrix} c & w & -v & u \\ -w & c & u & v \\ v & -u & c & w \end{pmatrix} \cdot \begin{pmatrix} \dot{c} \\ \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix}$$

• 4 differential equations (1 redundant causes dynamic state selection)

© Dirk Zimmer, December 2014, Slide 19

Motion in 3D: Planar Rotation

• The rotation matrix **R** results out of the cardan angles:

$$\boldsymbol{\omega}_{body} = \dot{\varphi_z} + \mathbf{R}_z \dot{\varphi_y} + \mathbf{R}_z \mathbf{R}_y \dot{\varphi_x}$$

$$\boldsymbol{\omega}_0 = \boldsymbol{\varphi}_x + \mathbf{R}_x^T \boldsymbol{\varphi}_y + \mathbf{R}_x^T \mathbf{R}_y^T \boldsymbol{\varphi}_z$$

• 3 differential equations (non-redundant)

© Dirk Zimmer, December 2014, Slide 1

Selection of Method

 The choice of a method can severely impact the simulation performance:

 This experiment was simulated 3 times with a different method for the orientation: 1) well chosen cardan angles, 2) badly chosen cardan angles 3) quaternions

Questions ?

Selection of Method

• The choice of a method can severely impact the simulation performance:

	good cardan angle seq.		quaternions		bad cardan angle seq.	
tolerance	error	steps	error	steps	error	steps
	4.9 · 10 ⁻⁴		$5.0 \cdot 10^{-3}$		$1.8 \cdot 10^{-0}$	$5.4 \cdot 10^4$
$1.0 \cdot 10^{-6}$	9.7 · 10-6	$6.2 \cdot 10^{3}$	$3.1 \cdot 10^{-4}$	$4.8 \cdot 10^{4}$	2.9 · 10-4	$9.5 \cdot 10^{4}$
$1.0 \cdot 10^{-8}$	$1.2 \cdot 10^{-7}$	$1.4 \cdot 10^4$	$1.1 \cdot 10^{-5}$	$8.4 \cdot 10^{4}$	3.5 · 10-5	$2.0 \cdot 10^{5}$
$1.0\cdot10^{-10}$	$1.2 \cdot 10^{-7}$	$2.3 \cdot 10^4$	1.1 · 10-6	$1.4 \cdot 10^{5}$	3.0 · 10-6	$4.4 \cdot 10^{5}$

 The choice drastically impacts the computational efficiency and the precision.