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In this lecture, we look at the modeling of 3D mechanical systems.

¢ 3D mechanical models look superficially just like planar
mechanical models. There are additional types of joints, but
other than that, there seem to be few surprises.

e Yet, the seemingly similar appearance is deceiving. There are a
substantial number of complications that the modeler has to
cope with when dealing with 3D mechanics. These are the
subject of this lecture.
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Essentially, there are 3 major difficulties we have to cope with:

1.  There are multiple ways to express the orientation of a body in
three dimensional space.

2. In planar mechanics, all potential variables could be expressed
in one common coordinate system: The inertial system. In 3D-
mechanics, such an approach is unfeasible.

3. The set of connector variables contains a redundant set of
variables. This causes severe problems for the formulation of
kinematic loops.
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There are 4 major variants to express the orientation of an object in 3D

N

e The rotation matrix
e Planar rotation

e Cardan angles

e Quaternions
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Orientation Matrix R

The rotation matrix R

e The orientation of an object is
completely defined by the coordinate
vectors of its body system.

e The relative orientation between two
objects can then be described by a
orthonormal matrix:
the rotation matrix R.

R1=RT
e Given the rotational matrix, we can
easily transform vectors between
different coordinate systems, e. g., [IRI],=1

Rw, = Wy,

© Dirk Zimmer, December 2014, Slide 5

Orientation Matrix R

The rotation matrix R

e The rotational matrix R is highly
redundant.

e Each row vector and each column
vector of Ris of length 1, hence there
are 6 constraint equations
connecting the 9 matrix elements.

e Asexpected, there are only 3
degrees of freedom, describing the
relative rotation of one coordinate
system to another.
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RL=RT

[IR[],=1
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The cardan angles (¢,, @, ®,)

e A non-redundant form to describe
the orientation are cardan angles.

] 0
cm{ ) sin(iy)
0 =sin(z.) cos(ysy)
tmi,\ —sin(ig,)
0 )
sin( 7, ) cos(2y)

cos(z:)  sin(z) 0
—\m( =) unl‘ )y 0

rotation into three subsequent
rotations around predetermined
axes.

e In this case:
first x,
theny,
finally z.

e This technique decomposes the (

R:Rz’R!‘"Rx
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The cardan angles (¢,, ¢,, ®,)

¢ Unfortunately, the decomposition
into separate yields a singularity at
@, =90°. The other two rotation axes
are then aligned and there are
infinitely many solutions.

e So cardan angles are only useful, if
one can make sure this case won’t
appear during simulation time.

e The sequence of axis rotation can be
chosen arbitrarily. Other sequences
are of course possible as well and
each valid sequence has a specific
point where the systems becomes
singular.
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1 0 0
0 cos(zy) sin(zy)
0 =sin(z.) cos(ysy)
cos(izy 0 —sin(izy)
0 1 0
sin(z,) 0 eos(z,)
cos(z:)  sin(z) 0
—sinl2:) cos(z:) O
1] 0 1
R=R, R, R,
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The planar rotation (n, ¢): y

e Every rotation can be regarded as a
planar rotation with the angle ¢ @ X
around a certain axis given by a unit
vector n.

e T o T e Y el
e We therefore have 4 variables and R=nn"+{{=nn" ) cos(ip) ~fisin(i7)

one constraint equation for the unit
vector.
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The planar rotation (n, ¢): y n

¢ Unfortunately, also the planar
rotation method is not always
invertible in a unique fashion. A null
roFatlon doe.s not have a well defined R=nn’ + (/—nn’ }vrm,:l ()
axis of rotation.

Matrix notation of
the cross product
e Hence, this method should only be

used if the axis of rotation is always
known, as in a revolute joint.

axb=ab

0 —ay @
i= a0 —-a
= 0
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e Quaternions are an extension of complex numbers and offer a robust
way to describe any rotation. A quaternion number consists of one real
and three imaginary components, denoted by i, j and k.

e The imaginary components can be summarized by a vector u.

Q=ctui+vj+wk. =c+u

e The multiplication rules for the imaginary components are as follows:
ij=k ji=—k i*=-1
jk=i, kj=-i; j=-1
ki=j. ik=-j. kK=-1
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e So the product of two quaternions can be written as:
00 = (c+u)(c'+u) = (e’ —u-u)+(uxu)+cu'+c'u

e The complement of a quaternion number is defined to be:
QO=c+u=c-u
e The product of a quaternion number with its complement results in its

norm: o N
Q= +[uf”

e A unit quaternion is a quaternion of norm 1.

|0 =c2+|u|2 =1
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e According to the trigonometric Pythagoras...
cos(p/2) +sin(p/2) =1
e thereis an angle ¢ for every unit quaternion such that:
¢ =cos(p/2) and |u| = sin(p/2)

e |tis now evident how a unit quaternion can be used to describe an
orientation. The idea is related to the planar rotation. The imaginary
component u describes the axis, and the length of the axis describes
the rotation angle.

e The rotation matrix is then defined by:

R=2uu’ +2(u-¢)+21-1
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¢ So which of the four methods shall we apply?
e The answer is: all of them

¢ The rotational matrix is highly redundant but purely linear.
=> Itis used in the connector

e Cardan angles can be used for a spherical joint if the motion is limited
to non-singular (or ill-conditioned) areas.

=>» Free rotational motion, spherical joint

e Planar rotation is used when the rotational axis is known.
=> Revolute Joint

e Quaternions are the methods that avoids any singularity with the
slightest degree of redundancy. (But leads to non-linear equations)

=>» Free rotational motion, spherical joint
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e In planar mechanics, w was the derivative of ¢.
¢ In 3D mechanics, this is not so easy anymore. w represents a vector.
¢ |w]| represents the actual angular velocity
¢ w/|w] is the unit-vector of the rotation axis.

e w can either be resolved w.r.t. the inertial frame (w,) or w.r.t to the
body frame (wq,) -

e The body frame is the coordinate system attached to the body.
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¢ The rotational matrix is the one to integrate:

{.DDR = R(Dbon’_r = R

e This generates 9 differential equations and is thus never used.
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e The rotation matrix R results out of a planar rotation:

Rw() - wbarr’_\' —n- \;

« 1 differential equations
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e The rotation matrix R results out of the cardan angles:

Wiody — - T R.E+RR G,
= I o pl -
wo = A TR A +RIR]

« 3 differential equations (non-redundant)
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e The rotation matrix R results out of the quaternion rotation:

C:

c -w v u ,

_ 1
Whoaty =2 w ¢ —u v ;
-v u ¢ w .

w

¢

c W -V u i

P } u

Wy -w c 1 1 .
vV —u ¢ w )

w

e 4 differential equations (1 redundant causes dynamic state selection)
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e The choice of a method can severely impact the simulation
performance:
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e This experiment was simulated 3 times with a different method for the
orientation: 1) well chosen cardan angles, 2) badly chosen cardan
angles 3) quaternions
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e The choice of a method can severely impact the simulation

performance:
i1 . i
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e This experiment was simulated 3 times with a different method for the
orientation: 1) well-chosen cardan angles, 2) badly chosen cardan
angles 3) quaternions
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e The choice of a method can severely impact the simulation

performance:
good cardan angle seq. quaternions | bad cardan angle seq.
tolerance | error steps error steps | error steps

10107 [ 491077 29.10° [50-107 26.10° | 18107 54.10°
1.0-10°% | 9.7-10°  62-10° |3.1-107% 4.8.10°|29.10% 9.5.10°
1.0-10°% | 1.2.1077 1410 | 1.1-107° 84.10° | 3.5.100°  2.0-10°
1L0-107 | 1.2-1077 2310 | 11-107° 1.4-10° | 3.0-10°%  4.4.10°

e The choice drastically impacts the computational efficiency and the
precision.
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Questions ?




