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In this lecture, we look at the modeling of 3D mechanical systems.

¢ 3D mechanical models look superficially just like planar
mechanical models. There are additional types of joints, but
other than that, there seem to be few surprises.

e Yet, the seemingly similar appearance is deceiving. There are a
substantial number of complications that the modeler has to
cope with when dealing with 3D mechanics. These are the
subject of this lecture.
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Essentially, there are 3 major difficulties we have to cope with:

1.  There are multiple ways to express the orientation of a body in
three dimensional space.

2. In planar mechanics, all potential variables could be expressed
in one common coordinate system: The inertial system. In 3D-
mechanics, such an approach is unfeasible.

3. The set of connector variables contains a redundant set of
variables. This causes severe problems for the formulation of
kinematic loops.
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Z

¢ In planar mechanics, all connector variables are resolved w.r.t. the
inertial coordinate system.
¢ In 3D-mechanics, we will refer also to the body system. A coordinate
system that is attached to each body.
e Notation The index 0 indicates that a vector is resolved w.r.t. to the
ineratial system. The index body indicates that is resolved w.r.t. to
its body system.
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e The rotational matrix can be used to transform between these
coordinate systems. For instance

R(‘)0 = mbody

_RT
W, = RTw,,q,

e Repetition: The rotational matrix is the one to integrate:

@R =Rwy,s, =R
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e The fundamental set of equations can be formulated in the inertial
system:

f0=m'30

to = Jow

« In planar mechanics, the rotational inertia was represented by a simple
scalar I. In 3D mechanics, it is represented by a 3D matrix J: the inertia
tensor.

« However, J; is not a constant during motion since it depends on the
orientation of the body.
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* Inthe body-system, the inertia tensor J,,, is constant. Hence we can
transform the law into the body system:

d ,
to=— (Rth,)J.‘wmd.‘)
dr
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¢ Inthe body-system, the inertia tensor J,,4, is constant. Hence we can
transform the law into the body system:

d
to= 7 ( R’ JbodvWhady )

BT T z
to = R Jpoiywrody + R JboiyWhodv
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* Inthe body-system, the inertia tensor J .4, is constant. Hence we can
transform the law into the body system:

d =
th=— (RZJhmJ'r(.\Jhullr)
dr

_pT T -
to = R Jpoaywhody + R Jbody@hody

T T 1
R’ tpody = R* WhoddbodvWpody + R JbodyZbod
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¢ Inthe body-system, the inertia tensor J 4, is constant. Hence we can
transform the law into the body system:

d
to= 7 ( R’ JbodvWhady )

BT T z
to = R Jpoiywrody + R JboiyWhodv

1 —PT= T
R tsoi = R Whody dpodi @ hody + R Jpody Zbod,

thody = Whody X JbodvWhody + IbodyZbody
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* Inthe body-system, the inertia tensor J 4, is constant. Hence we can
transform the law into the body system:

e An additional term for the torque occurs: The gyroscopic torque.

e This torque is a pseudo-torque that resulted out of the transformation
into the body system.

thody T Whody X JbodyWhody T VbodyEbody

© Dirk Zimmer, November 2014, Slide 11

Selection of Method mm - ‘#.;Z

Robotics and Mechatronics Centre

e We have observed the (highly non-intuitive) behavior of the gyroscopic
effect, already last lecture:
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¢ The translational components can be more conveniently described in

the inertial system.

e The rotational components are preferably resolved w.r.t. to the body

system.
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¢ In the MultiBody library, the
connector is designed as
follows:

e Vectors and matrices are
supported natively by
Modelica and used for the
connector variables.

connector Frame

Sl .Position r_O[3];
Real T[3, 3];

SI.AngularVelocity w[3]

flow SlI.Force f[3];

flow SI.Torque t[3];

end Frame;
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Connector Design

¢ In the MultiBody library, the
connector is designed as
follows:

e Resolved w.r.t. to the
inertial system:

r OorT

e Resolved w.r.t. to the body
system (T):

w, €, and F whyever.)

m - 4%
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connector Frame

Sl.Position r_0[3];
Real T[3, 3];

Sl .AngularVelocity w[3]
flow SlI.Force f[3];
flow SI.Torque t[3];

end Frame;
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Let us look at the fixed translation component:

a b

—

¢ It essentially represents the lever principle. r

t=rxf
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Let us look at the fixed translation component:

e |t essentially represents the lever principle. r
V=rxw
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Let us look at the fixed translation component: R b

—

e [t essentially represents the lever principle. r

model FixedTranslation
parameter Sl.Position r[3] = {0,0,0};

frame_b.r_0 = frame_a.r_0 + transpose(frame_a.T)*r;
frame_b.T = frame_a.T;

frame_b.w = frame_a.w;

zeros(3) = frame_a.f + frame_b.f;

zeros(3) = frame_a.t + frame_b.t + cross(r, frame_b.f);

end FixedTranslation;
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e Here, the multibody
components are used to
assemble a robot.
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e Here, the multibody
components are used to
assemble a robot.

e It essentially consists out of
fixed translations combined
with body parts and
actuated revolute joints.
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Redundant Connector Variables

e The potential variables of
the Multibody connector are
highly redundant.

connector Frame

Sl.Position r_O[3];
e Only 3 variables are
sufficient to describe the
3D-rotation.

Real T[3, 3];
Sl .AngularVelocity w[3]
e But the connector contains

3*3 + 3 =12 potential
variables for the rotational

part.
flow Sl.Torque t[3];

flow Sl.Force f[3];

end Frame;
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Kinematic Loops

1={0,05,0.1}

7 degrees of freedom — 6 constraint equations = 1 degree of freedom

Kinematic Loops

mm - 4%
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Kinematic Loops

e This redundancy causes
severe problems in case of
kinematic loops.

¢ Closing a kinematic loop
establishes 6 constraint
equations.

e But the redundant
connector set leads to 15
constraint equations (these
are 9 too many).
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n={00,1}

1={0,0.5,0.1}

5
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Kinematic Loops

¢ Inthe “old days”, the loops
had to manually closed with
the aid of a loop-breaker.

Breaker
e The loop-breaker is a model
that contains just the
necessary 6 constraint

equations
(and the balance of force and torque, naturally)

{0,0.5,0.1}

r

r={1.2,0,0 mey
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Kinematic Loops

In the “old days”, the loops had to manually closed with the aid
of a loop-breaker.

The loop-breaker is a model that contains just the necessary 6
constraint equations

(and the balance of force and torque, naturally)

model LoopBreaker
Interfaces.Frame_a frame_a;
Interfaces.Frame_b frame_b;

equation
frame_a.r_0 frame_b.r_0;
cross(frame_a.T[1, :], frame_a.T[2, :])*frame_b.T[2, :] = O;
:PD*frame_b.T[1, :] = 0;

-cross(frame_a.T[1, :],frame_a.T[2,
frame_a.T[2, :]*frame_b.T[1, :] =0
frame_a.f + frame_b.f = zeros(3);
frame_a.t + frame_b.t = zeros(3);
end LoopBreaker

mm - 4%

Kinematic Loops

In the “old days”, the loops had to manually closed with the aid

of a loop-breaker.

The loop-breaker is a model that contains just the necessary 6
constraint equations

(and the balance of force and torque, naturally)

model LoopBreaker
Interfaces.Frame_a frame_a;
Interfaces.Frame_b frame_b;

equation
frame_a.r_0 frame_b.r_0;
cross(frame_a.T[1, :], frame_a.T[2, :])*frame_b.T[2,
-cross(frame_a.T[1, :].frame_a.T[2, :])*frame_b.T[1,
frame_a.T[2, :]*frame_b.T[1, :] =0
frame_a.f + frame_b.f = zeros(3);

frame_a.t + frame_b.t = zeros(3);
end LoopBreaker

——
o
oo

© Dirk Zimmer, November 2014, Slide 26

e Nowadays, the loop breaker s
is not necessary anymore.

e The process has been
automated (by introducing a
whole new set of irritating
language constructs).

1={0,0.5,0.1}

mm - 4%

Kinematic Loops

y
i l i | a D ¥
1=(1.20,0) n={10,0}
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e Another special case are planar kinematic loops within 3D mechanics.

e Even if we apply the correct set of constraint equations, we get a

singular system.

e Letuslook at an example...
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Planar kinematic loops

e To this end, there is a special
revolute joint to cut the
planar loop.

constantTorque

m - 4%
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fixedTransl?

c.d=24024

revolute3
n=(00.1)
n=(00.1)

n={0,1,0}
X rewite

springDar?
prismatic

t
n=(0,1,0}

{ro0ku
Tawnjonal
Zanjonal

asuelLpaxy
fixedTransi?

body1

N7
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e The problem is the following:

e There are two planar closed
kinematic loops each defined  corsantoae
by three revolute joints and a
prismatic joint.

fixedTransi?

revolute3
revoluted.
n={0,0,1}

n=(0,1,0}
X rewlute

e Two revolute joints with the
same rotation axis suffice to
restrict the freedom of
motion to a single axis. The
constraint of the third
revolute joint is therefore
superfluous, which leads to
an additional redundancy

T
> springDan?
prismatic
o ’—‘, 5

n={0,1.0}

{r'o'o}=u
Tewnjonal

s ipaxy
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Questions ?




