, , Real-Time Simulation m - %
Virtual Physics Robos i aca i

Equation-Based Modeling

In this lecture, we give an example of modeling a fully functional

TUM. December 09, 2014 real-time simulation. This concerns essentially three topics:

Real-Time Simulation with Dymola ¢ Time-Integration for Real-Time and synchronization.
equation N, W |
sx0 = cos(frame_a.phi)*sx_norm + . - = =
sy0 = -sin(frame_a.phi)*sx_norm + . t ‘= - & ¢ Handling of User Input.

vy = der(frame_a.y);

w_roll = der(flange_a.phi);
VX*sx0 + vy*sy0; .
-vx*sy0 + vy*sx0; . .

at = v_lat - 0;
ong = v_long - R*w_roll; -

) el
= sqrt(v_slip_long"2 +

e Real-Time 3D Visualization.

v_s

—_long*R = flange_a.tau;

frame_a.t = 0;

f = N*. S_Func(vAdhesion,vSlide, . oo i g
V. 1

=

Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre
© Dirk Zimmer, December 2014, Slide 2

Time Integration m - 4% Time Integration m - 4%

Robotics and Mechatronics Centre Robotics and Mechatronics Centre
. pulse
If we want to simulate something in real-time. The numerical ODE- The two-track car model seems to be suited torquel —
solver is subject to a few severe constraints. t0 be simulated in real time <«
. 7 iE ~‘Kau
period=2

e The solver must compute fast enough
- larger stepsizes or simple algorithms e Only linear-systems of equations (non-

linear solvers are not required)

e |f the system is interactive, there is a maximum step-size

-> favors simple algorithm. o
- fixed step-size methods No events

e Each single integration step must be fast enough e Limited stiffness.
- no solvers with indefinite number of iterations (avoid any non-
linearities)
- no events.
- no implicite solvers (will be explained after Christmas)
_ramp
/:I_:\\itau _
duration=2

© Dirk Zimmer, December 2014, Slide 3 © Dirk Zimmer, December 2014, Slide 4

Time Integration nm - %%

Robotics and Mechatronics Centre

In Dymola, it is very easy to simulate the two-track model in real-time.
i)

mnd | osieen | s | etun | comede | mea 0]
Lnpermat

s [T et

s, rtwed

i_;_. Shors el ol j

© Dirk Zimmer, December 2014, Slide 5

Time Integration m - 4%

Robotics and Mechatronics Centre

In Dymola it is very easy to simulate the two-track model in real-time.

e We simply use the most simple solver that is available:
Forward Euler

e We use a fixed step-size of 1ms

e We may reduce the number of output values (since writing to the
disc can easily be more time-consuming that the actual
simulation...)

e In fact, we are much faster than real-time. We need to artificially
slow-down the simulation in order to synchronize with real-time.

© Dirk Zimmer, December 2014, Slide 6

Real-Time Synchronization nm - %%

Robotics and Mechatronics Centre

Normal

e For time synchronization, we need a special model.

e This model is contained in the Modelica Device Drivers Library
(developed by DLR)

e |t slows down the simulation by calling a function that stays in an
idle loop.

© Dirk Zimmer, December 2014, Slide 7

Synchronize Realtime Block m - 4%

Robotics and Mechatronics Centre

block SynchronizeRealtime

The Synchronize Realtime

Block: i in = 1);
name parameter Integer resolution(min 1);

parameter ProcessPriority p;

output Real calculationTime;

output Real availableTime;
equation

when (initial()) then

setProcessPriority(
Normal if (p == "Idle™) then -2
else if (p “Below™) then -1
. else if (p ‘Normal™™) then 0
e The block simply calls an else if (p "High™) then 1
Modelica function of the else if (p == "Realtime™) then 2
. . . else 0);
DeviceDrivers Library.] e

(calculationTime,availableTime)

realtimeSynchronize(time,resolution);

end SynchronizeRealtime;

© Dirk Zimmer, December 2014, Slide 8

Synchronize Realtime Function nm - %%

Robotics and Mechatronics Centre

The Synchronize Realtime function realtimeSynchronize
input Real simTime;
Block: input Integer resolution = 1;

name

output Real calculationTime;

output Real availableTime;

external "C" calculationTime =
0S_realtimeSynchronize(simTime,resolution,
availableTime);

annotation(Include = **
#ifndef MDDSYNC

#define MDDSYNC
Normal #include <windows.h>
L1
H double 0S_realtimeSynchronize(double simTime,
e The block simply calls an e it reso:rjtizn. T :vailaéle'lr'i“me) <
Modelica function of the L1
: : ; while((getTime(resolution)- startTime)/1000 <= simTime)
DeviceDrivers Library. 1
Sleep(0);
L1
3
#endif

end realtimeSynchronize;

© Dirk Zimmer, December 2014, Slide 9

User Interaction mm - ‘#;Z

Robotics and Mechatronics Centre

name

- > § |return

space

e Also for the user interaction, we need a special input block.

e This block is contained in the Modelica Device Drivers Library
(developed by DLR)

e The Boolean output signals indicate when a certain key is pressed
down.

© Dirk Zimmer, December 2014, Slide 10

Keyboard Input Block nm - %%

Robotics and Mechatronics Centre

The K rdIn Block: block KeyboardInput
€ eyboa d put Bloc parameter Real sampleT = 0.01

name BooleanOutput keyUp;
- BooleanOutput keyDown;
4 - BooleanOutput keRight;
. (]
-« —-
t
T um Integer KeyCode[10];
- InputDevices.Keyboard keyboard;
space
\V4 \V4 \V4
equation
e The block simply calls an when (sample(0,sampleT))then
. . KeyCode = keyboard.getData();
Modelica function of the end when:

DeviceDrivers Library.
keyUp = (KeyCode[1]==1);
keyD?wn = (KeyCode[2] H
e [t simply polls the current ‘E%’R'ght = (KeyGode[3]==1):
state of the keyboard with a

given sample rate.

end Frame;

© Dirk Zimmer, December 2014, Slide 11

Keyboard Input Block m - 4%

Robotics and Mechatronics Centre

The Keyboard Input Block: function getData

name output Integer KeyCode[10];
external "C" KEY_getData(KeyCode);

. annotation (Include=*
- >} |return #define VOID void
. typedef char CHAR;
[space typedef short SHORT;
Y y Vv typedef long LONG;
#include <windows.h>

e On the right you see the L] . .
void KEY_getData(int * piKeyState)

getData function that is {
called to poll the keyboard iT(GetAsynckeyState(VK_UP))
piKeyState[0] = 1;
state. else piKeyState[0] = 0;);
o It calls an external C L]
function.

e The code is contained in the

X end getData;
annotation.

© Dirk Zimmer, December 2014, Slide 12

Filtering User Input nm - %%

Robotics and Mechatronics Centre

booleanToReal criticalDamping

B D—’f.>
=» R

f=1

e Using this input block, the user can only control in a Boolean way:
ON or OFF.

e To enable a more continuous control, we can filter the input signal.

e To this end, we apply the critical-Damping Filter from the Modelica
Standard Library.

© Dirk Zimmer, December 2014, Slide 13

Filtering User Input

mm - 4%

Robotics and Mechatronics Centre

kevboardinput booleanToReal criticalDamping
B
>
- R /S
f=1

criticalDamping.y

l\‘ |
\\\

\

0.0 25 5.0 75

100 125 150
© Dirk Zimmer, December 2014, Slide 14

Filtering User Input nm - %%

Robotics and Mechatronics Centre

n elements

ground

e This electrical circuit illustrates the functionality of the critical-
damping filter

e |t can be regarded as RC lowpass filter with multiple stages (in our
case: 2)

© Dirk Zimmer, December 2014, Slide 15

Applying User Interaction

steering

frontBrake

£Ueaio0q

rearBrake

JaEao TPpe

janbio L BuiAp

mm - 4%

Robotics and Mechatronics Centre

Using critical damping
filters, | created a
control block for the
car model.

Its outputs are the
breaking forces and
the driving and
steering torque.

© Dirk Zimmer, December 2014, Slide 16

Applying User Interaction

m - 4%

Robotics and Mechatronics Centre

torquel -
— N .
tau pj\ =
springDamper

fixed

rmal

The forces and torques are
then applied on the car
model.

Applying User Interaction

mm - 4%

Robotics and Mechatronics Centre

torque1
tau rj\

=

The forces and torques are
then applied on the car
model.

There is simple brake
model

The steering is limited and
auto-centered by a spring-
damper system.

© Dirk Zimmer, December 2014, Slide 18

‘a“'/r © Dirk Zimmer, December 2014, Slide 17
Visualization m + ‘#’m

Robotics and Mechatronics Centre

e Now we can steer and simulate our car model in real-time but this
makes hardly any fun, if we do not have a 3D real-time

visualization.

e The SimVis Library supports a real-time visualization in 3D. It has

been developed by DLR.

e SimVis is based on the OpenSceneGraph Technology that itself

uses the OpenGL standard.

e The SimVis library is conceptually similar to the DeviceDrivers
library. It provides a set of Modelica models that then call external

C-functions.

© Dirk Zimmer, December 2014, Slide 19

OpenSceneGraph

« OpenSceneGraph is an open
source implementation of the
scene graph technology.

« Inthe scene graph technology the
scene is describes as a graph.

e The visualization of the graph is
based on the OpenGL 2.1 standard.

« For the online-visualization, all we
need to do is to update the graph.

mm - 4%

Robotics and Mechatronics Centre

Apjarance

© Dirk Zimmer, December 2014, Slide 20

SimVis Structure

m - 4%

Robotics and Mechatronics Centre

The SimVis Library contains various elements:

e Shapes

o @ 2

rmertoeySope Fieshape

e Cameras

FreeCamera

HI .ﬂél Iml I.D,_,,.-I I.

abc habc

e TextShope TestiskShope

e

e Lights
i)
[

Dfuelipt

Ay

g

Sprlligft

-

Light

© Dirk Zimmer, December 2014, Slide 21

SimVis Structure

mm - 4%

Robotics and Mechatronics Centre

The SimVis Library contains various elements:

e Shapes
9 @ 2
Omierus i Lnm

e Cameras

abc habc

TextShope TestiskShope

Frea AR F ot Ly Froad
FreeCamera Al ety Folks * P e
e Lights
L R
ral =
i SwE B
Diffusslight Spollight Light

All these elements use
the Frame Connector
form the MultiBody
library.

Hence they can simply
be used like MultiBody
components.

© Dirk Zimmer, December 2014, Slide 22

<

apeoToRUA

[‘j_njynqmchuadLF

ix?

Applying SimVis

‘]:?mgcmaam:

upeoTowRUA

m - 4%

Robotics and Mechatronics Centre

The visualization of the
wheels is integrated into
the chassis model

© Dirk Zimmer, December 2014, Slide 23

Applying SimVis

2
<
E
3
El
5
g
8
a
2
o
&

fla?,

The visualization of the wheels is integrated into the axis model

nertic

© Dirk Zimmer, December 2014, Slide 24

S — O
I'I;.Z

mm - 4%

Robotics and Mechatronics Centre

WBrypeooeuAp

fla?

Applying SimVis

m - 4%

Robotics and Mechatronics Centre

Finally....

mm - 4%

Robotics and Mechatronics Centre

light1
.

fixed2 || U H,L

e Lights and Landscape are
added to form the
complete scene.

e A dynamic follow camera
is attached to the rear
end of the car pointing to
the nose.

/

© Dirk Zimmer, December 2014, Slide 25

And voilal

We're done! Almost... the rest is your task in Exercise 9.

© Dirk Zimmer, December 2014, Slide 26

Questions ?

