rmc logo

Mitarbeiter

Passfoto-DSC_5654.jpg

Dr. -Ing. Armin Wedler

Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Institut für Robotik und Mechatronik

"Only the unconventional enables revolution rather than evolution, be positive and do good"

 

ORCID: https://orcid.org/0000-0001-8641-0163

SCOPUS: https://www.scopus.com/authid/detail.uri?authorId=17436476300

Linked-in:  https://www.linkedin.com/in/armin-wedler-24a64a92/

 

Date of Birth:  20 May 1974 in Hanover

Dr. Armin Wedler received his diploma and bachelor's degree in mechanical engineering and robotics in 2004 and his doctorate on "Adaptive passive compliant systems for use in robotics" in 2010 from the University of Hannover.

Mr. Wedler started his professional career in 2006, also at the university as a research assistant, and moved to DLR German Aerospace Center, Institute of Robotics and Mechatronics in 2008.

He focused his research and activities to enhance the capabilities of autonomous and teleoperated mobile robots. With the design and development of advanced mobile systems for space and planetary exploration his career has been started, while Mr. Wedler is convinced to support with his work sustainable technologies for humanity. This includes the use of robotics for crises regions, to support humanitarian organisations in food supply chains or to detect and observe climate change in agriculture and enhance the modern food production by the use of sustainable advanced robotic systems in agriculture.

With his contributions to national and international projects such as EXOMARS (ESA), DEXHAND (DLR-ESA), Mobile Payload Element (DLR- MPE), Next Lunar Lander (ESA-NLL), ROBEX (HGF), ARCHES (HGF), MASCOT (DLR, CNES, JAXA), Rover for MMX (DLR, CNES, JAXA) he was able to further expand his expertise, experience and knowledge base in space projects.

With the coordination of the AHEAD (autonomous humanitarian emergency aid devices) Project within (DLR), Mr. Wedler has increased the external funding for this last mile delivery in humanitarian areas and has extend the activity by the KI4HE (12/2021) and MaiSHU (01/2022) projects. Furthermore, with the HGF funded iFOODis project (2023-2027) he will focus the work on intelligent robotic systems to increase sustainability of food cycles.

Mr. Wedler is also active in various committees, e.g. ISCEG as well as in scientific and technical topic groups for robotics in harsh environments.

Employment History

01/2008 – Present:  German Space Agency (DLR), Munich, Germany
Position:  Research scientist in the department of “Mechatronic Components and Systems” (space robot and mobility group), Institute of Robotics and Mechatronics (RM)

02/2006 - 12/2007: University of Hanover (LUH), Hanover, Germany
Position: Research scientist in the department of “Machine Structures”, Institute of Production Engineering and Machine Tools (IFW)

Education

12/2010: University of Hanover, (LUH)  Hanover , Germany
Doctor Degree (Dr.-Ing.); Grade: summa cum laude

10/2004: University of Hanover, (LUH)  Hanover, Germany
Diploma Degree: Mechanical Engineering
Major: Mechatronics (Dipl.-Ing.)
Thesis performed at ESTEC / TEC-MMA (05/2004-10/2004)

06/2004: University of Hanover, (LUH)  Hanover, Germany
Bachelor of Science: Mechanical Engineering (B.Sc.)

Field of Interest:

  • System design of mobile robots
  • Advanced perception and navigation
  • Autonomous and tele-robotic operations
  • Mechanical and mechatronic design for demanding robotics and space applications
    • Drive and sensor systems for robots
    • Locomotion sub systems for mobile robots
    • Arm and leg manipulators
    • Interfaces and input devices

Functions:

Committee:

Lectures:

  • Master of Engineering in Space Systems and Business Engineering (1 Lecture every 1/2 year)

 

Economic Activities:

Projects:

  • 2008 – 2010: EXOMARS – „Exobiology on Mars“
    • Mechanical design of the drive train system for the exomars rover
    • Development of a bevel gear steering and drive unit for the exomars rover
  • 2010 -2013: DEXHAND – „Dextrous Robotic Hand“
    • Mechanical design of the hand
    • System Engineer 
  • 2012 – 2014: MPE – “Mobile Payload Element”, Payload Study for the ESA Lunar Lander
    • Project leader for the DLR-RM developments of the MPE, locomotion subsystem and autonomous payload element
    • Design of the locomotion subsystem
    • Design of the drivetrain for the mobility system
  • 2013 – 2015: TeaM - “Technology Development for autonomous Moon missions
    • Development of key technologies for autonomous Moon missions
    • Development of the Locomotion Subsystem for the LRU
  • 2013 – 2016: LRU – “Lunar-Rover-Unit”
    • Project leader
    • System Engineer
    • Mechanical Design of the Locomotion Sub System
  • 2013 - 2017: ROBEX – “Robotic Exploration of Extreme Environments”- Helmholtz-Alliance
    • Representative spokesperson of ROBEX
    • Topic responsible for the research topic 3000 – robotic developments
    • Development of a universal docking interface for robotics
    • Coordination of the robotic activity of the analog demo mission in 2017
  • 2014 – 2016: MASCOT – “Mobile Asteroid Surface Scout”
    • Consultant in Actuation Design
  • 2017 – now: MMX – “Mars Moon Explorer”
    • Project initiation phase (2017 – 2018), coordination
    • Technical and political advisor
  • 2015 - now: MOREX - “MOdulares Robotisches EXplorationssystem
    • Project leader
    • Development of intelligent, modular and agile mobility for planetary exploration
    • Definition of interfaces for science and robotic usage
    • Space qualification of components / Tests and Verification
  • 2018 – now: ARCHES – Autonomous Robotic Networks to Help Modern Societies”
    • Project leader and Substitutional Spokespersons
    • Coordination of the robotic activities and developments within DLR
  • 2019/09 – 2020/05 – ESA Heracles RGE Rover Garage Element”
    • Project leader for DLR contributions, subcontracted by OHB
    • Design of the rover deployment mechanism of the RGE
    • Phase 0 Study for ESA Heracles Lunar Landing Mission
  • 2020 – now: A.H.E.A.D. – Autonomous Humanitarian Emergency Aid Devices”
    • Project leader and Coordinator of the initiative
    • Coordination of the robotic activities and developments within DLR
  • 2021/11 - 2023/11 – now: CARNival – “Consistent Aerial Radar-based Navigation In Visibility challenged Areas and Landscapes
    • Project leader on DLR side
  • 12/2021 – 11/2024 - KI4HE „KI-basierte Fähigkeiten für autonome Fahrzeuge im humanitären Einsatz"
    • Project leader and Coordinator of the initiative
    • Coordination of the robotic activities and developments within DLR
  • 01/2022 – 12/2024 – MaiSHU– „Multimodale Wahrnehmung und Mensch-Maschine-Schnittstellen teilautonomer  intelligenter Systeme für humanitäre Hilfe in unsicheren und unstrukturierten Umgebungen“
    • Project leader and Coordinator of the initiative
    • Coordination of the robotic activities and developments within DLR
  • 2022/01 – now: DeLeMIS – “Demonstration of Learning Machines for Improvements in Space Missions”
    • Project leader for DLR contributions, subcontracted by EFS (ESA Contract)
  • 2023 – 2027: iFOODis – “Improving the sustainability of food cycles through intelligent (robotic) systems”
    • Project leader and Substitutional Spokespersons
    • Coordination of the robotic activities and developments within DLR
  • 2023 - 2027: LUNA facility Cologne:
    • Responsible for the robotic AP 3008 Rover development
    • Coordination within the DLR robotic teams

Project Videos:

Space Bot Camp 2015:

SBC RM Explorers Team Video

SBC Competition Video

ROBEX Project 2017:

ROBEX Analoge Mission Video

ROBEX @ Heute Journal 24.07.2017

ARCHES Project 2018:

ARCHES @ International Astronautical Congress 2018

AHEAD Project 2020:

AHEAD - Autonomous Humanitarian Emergency Aid Devices @ DLR Oberfaffenhofen during WFP driver training with SHERP ATV @ International Astronautical Congress 2018

Patents:

Mr. Armin Wedler is the inventor, participator of eighteen Patents, where eight are pending, sixteen are awarded and three are licensed. (Status Date: 10.10.2020)

Publication:

Please find the full Publication List in DLR ELIB here

[1]       R. Giubilato, M. Vayugundla, M. Schuster, W. Stürzl, A. Wedler, R. Triebel, et al.. Relocalization with submaps: Multi-session mapping for planetary rovers equipped with stereo cameras. IEEE Robotics and Automation Letters, 5(2):580–587, April 2020. Url: https://elib.dlr.de/133896/

[2]       M.J. Schuster, M.G. Müller, S.G. Brunner, H. Lehner, P. Lehner, R. Sakagami, et al.. The arches space-analogue demonstration mission: Towards heterogeneous teams of autonomous robots for collaborative scientific sampling in planetary exploration. IEEE Robotics and Automation Letters, 5(4):5315–5322, Oktober 2020. A video accompanying the article shows two demonstrations of our rovers and drone operating autonomously in a Mars-like environment at the International Astronautical Congress (IAC) 2018 as well as our multi-robot 6D Simultaneous Localization and Mapping (SLAM) experiment with three agents at a Moon-analogue site on the volcano Mt. Etna. Is is available at https://ieeexplore.ieee.org/document/9134730. Url: https://elib.dlr.de/136354/

[3]       M.J. Schuster, B. Rebele, M.G. Müller, S.G. Brunner, A. Dömel, B. Vodermayer, et al.. The arches moonanalogue demonstration mission: Towards teams of autonomous robots for collaborative scientific sampling in lunar environments. In European Lunar Symposium (ELS), 2020. Url: https://elib.dlr.de/139810/

[4]       M. Smisek, M. Schuster, L. Meyer, M. Vayugundla, F. Schuler, B.-M. Steinmetz, et al.. Into the unknown autonomous navigation of the mmx rover on the unknown surface of mars’ moon phobos. In ICRA 2020 Workshop on Opportunities and Challenges in Space Robotics, Juni 2020. Url: https://elib.dlr.de/135160/

[5]       A. Wedler, M.J. Schuster, M.G. Müller, B. Vodermayer, R. Giubilato, M. Vayugundla, et al.. German aerospace centers advanced robotic technology for future lunar scientific missions. Philosophical transactions of the royal society A, 379(2188), Nov. 2020. Published by: Royal Society, Print ISSN:1364-503X, Online ISSN:1471-2962 History: Manuscript accepted07/09/2020, Published online23/11/2020, Published in print11/01/2021. Url: https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0574

[6]       L. Witte, A. Heffels, M. Killian, M. Knapmeyer, C. Lange, N. Toth, et al.. A robotically deployable lunar surface science station and its validation in a moon-analogue environment. Planetary and Space Science, 193:105080, 2020. Url: http://www.sciencedirect.com/science/article/pii/S0032063320302932

[7]       A. Börner, S. Adeli, L. Biemann, U.-C. Fiebig, J. Helbert, R. Jaumann, et al.. Lunar exploration roadmap, Oktober 2019. Url: https://elib.dlr.de/135255/

[8]       W. Bertleff, A. Wedler, J. Reill, A. Maier, and A.O. Albu-Schäffer. Development and qualification of a modular drivetrain unit. In ESMATS 2019, Oktober 2019. Url: https://elib.dlr.de/130787/

[9]       J. Bertrand, S. Tardivel, F. IJpelaan, E. Remetean, A.T.S. Mary, M. Chalon, et al.. Roving on phobos: challenges of the mmx rover for space robotics. In Proc. of the 15th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), vol. 15, . ESA, May 2019. Url: https://elib.dlr.de/128408/1/__rm-samba01_USERDIR_project_RST_Projekte_MMX_S.3a_14.10_Be rtrand.pdf

[10]   P. Lutz, M.G. Müller, M. Maier, S. Stoneman, T. Tomic, I. von Bargen, et al.. Ardea - an mav with skills for future planetary missions. Journal of Field Robotics, 37(4):515–551, 2019. Url: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21949

[11]   S. Schröder, D. Vogt, K. Rammelkamp, S. Kubitza, S. Frohmann, E. Dietz, et al.. Libs for in-situ geochemical investigations of extraterrestrial surfaces of atmosphereless bodies. In 10th Moscow Solar System Symposium 10M-S3 2019, 2019. Url: https://elib.dlr.de/131729/

[12]   M.J. Schuster, M.G. Müller, S.G. Brunner, H. Lehner, P. Lehner, A. Dömel, et al.. Towards heterogeneous robotic teams for collaborative scientific sampling in lunar and planetary environments. In Workshop on Informed Scientific Sampling in Large-scale Outdoor Environments at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019. Url: https://elib.dlr.de/132829/

[13]   S.G. Brunner, P. Lehner, M.J. Schuster, S. Riedel, R. Belder, A. Wedler, et al.. Design, execution and postmortem analysis of prolonged autonomous robot operations. In IEEE/RSJ International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 2018. Url: https://elib.dlr.de/121511/1/elib.pdf

[14]   K. Bussmann, L. Meyer, F. Steidle, and A. Wedler. Slip modeling and estimation for a planetary exploration rover: Experimental results from mt. etna. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2449–2456, 2018. Url: https://elib.dlr.de/126951/

[15]   G. Grunwald, M.A.R. Garzon, K. Nottensteiner, and A. Wedler. Robotics for in-space assembly. In International Scientific and Technological Conference Extreme Robotics, Juni 2018. Url: https://elib.dlr.de/120538/

[16]   P. Lehner, S.G. Brunner, A. Dömel, H. Gmeiner, S. Riedel, B. Vodermayer, et al.. Mobile manipulation for planetary exploration. In 2018 IEEE Aerospace Conference, IEEE Aerospace Conference, . IEEE, März 2018. Url: https://elib.dlr.de/125139/

[17]   N.Y.-S. Lii, C. Riecke, D. Leidner, S. Schätzle, P. Schmaus, B. Weber, et al.. The robot as an avatar or co-worker? an investigation of the different teleoperation modalities through the kontur-2 and meteron supvis justin space telerobotic missions. In 69th International Astronautical Congress (IAC), Bremen, Germany, Oktober 2018. Url: https://elib.dlr.de/133023/

[18]   H. Rauer, H. Michaelis, R. Jaumann, E. Kührt, J. Oberst, M. Grott, et al.. Space technology developments for planetary exploration at dlr – a selection of activities. In Planetary Exploration 2061, vol. Technologies and Infrastructures Workshop for Planetary Exploration, towards 2061, . EPFL, Lausanne, Switzerland, April 23-25 2018.

[19]   S. Völk, A. Kimpe, A. Wedler, M. Knapmeyer, F. Sohl, A. Heffels, et al.. The network infrastructure for the robex demomission space. In 15th International Conference on Space Operations, 2018. Url: https://elib.dlr.de/124166/

[20]   M. Vayugundla, F. Steidle, M. Smisek, M.J. Schuster, K. Bussmann, and A. Wedler. Datasets of long range navigation experiments in a moon analogue environment on mount etna. In ISR - 50th International Symposium on Robotics, no. 50 in ISR, p. 77, . VDI/VDE, June 20-21 2018. Url: https://elib.dlr.de/124514/1/08470571.pdf

[21]   A. Wedler, K. Bussmann, A. Dömel, M. Drauschke, H. Gmeiner, I.L. Grixa, et al.. From the robex experiment toward the robotic deployment and maintenance of scientific infrastructure for future planetary exploration missions. In 42nd COSPAR Scientific Assembly, vol. 42, Pasadena, California, July 14 - 22 2018. COSPAR - Committee on Space Research.

[22]   A. Wedler, L. Metcalfe, D. Alfano, K. Hambuchen, S. Vangen, B. Wilcox, et al.. Telerobotic operations with time delay, results from the isecg gap assesment team. In Prceedings of the 69th International Astronautical Congress (IAC), vol. 69, . International Astronautical Federation (IAF), 1-5 October 2018 2018. Url: https://iafastro.directory/iac/paper/id/47235/summary/

[23]   A. Wedler, M. Wilde, A. Dömel, M.G. Müller, J. Reill, M. Schuster, et al.. From single autonomous robots toward cooperative robotic interactions for future planetary exploration missions. In Prceedings of the 69th International Astronautical Congress (IAC), no. 69, . International Astronautical Federation (IAF), 1-5 October 2018 2018. Url: https://iafastro.directory/iac/paper/id/47089/summary/

[24]   M.A.R. Garzon, K. Nottensteiner, A. Wedler, and G. Grunwald. Robotic technologies for in-space assembly operations. In dvanced Space Technologies in Robotics and Automation (ASTRA), Juni 2017. Url: https://elib.dlr.de/116805/

[25]   C. Lange, L. Witte, R. Rosta, N. Toth, G. Tsakyridis, S.S. Jahnke, et al.. First results from the robex demonstration mission on mt. etna: A modular lunar architecture deployed to perform seismic experiments on a volcano as terrestrial validation of a lunar mission scenario. In 68th Astronautical Congress (IAC), Oktober 2017. Url: https://elib.dlr.de/116824/

[26]   R. Qu, Y. Takei, M. Oda, H. Nakanishi, A. Wedler, and K. Yoshikawa. A study on the end-effector exchange mechanism of a space robot. Journal of Mechanics Engineering and Automation, 7(doi: 10.17265/21595275/2017.05.005):278–284, 2017. Url: http://www.davidpublisher.com/Public/uploads/Contribute/5a0cee1724d3b.pdf

[27]   M.J. Schuster, S.G. Brunner, K. Bussmann, S. Büttner, A. Dömel, M. Hellerer, et al.. Towards autonomous planetary exploration: The lightweight rover unit (lru), its success in the spacebotcamp challenge, and beyond. Journal of Intelligent & Robotic Systems (JINT), Nov. 2017. Url: https://doi.org/10.1007/s10846-017-0680-9

[28]   A. Wedler and A. Albu-Sch¨äffer. Perspektiven der raumfahrtrobotik "mond-rover-experiment auf dem ätna". In 48. Jahrestagung, Internationalen Förderkreis für Raumfahrt Hermann Oberth - Wernher von Braun (IFR) e.V.; ISS Die Zukunft der Raumfahrt. Und was kommt danach?, . Internationalen Förderkreis für Raumfahrt Hermann Oberth - Wernher von Braun (IFR) e.V., 2017. (invited talk).

[29]   A. Wedler, M. Vayugundla, H. Lehner, P. Lehner, M. Schuster, S. Brunner, et al.. Robex demomission overview, live from the lunar analogue. In ASTRA: 14th Symposium on Advanced Space Technologies in Robotics and Automation, Scheltema, Leiden, the Netherlands, june 2017. ESA.

[30]   A. Wedler, M. Vayugundla, H. Lehner, P. Lehner, M. Schuster, S. Brunner, et al.. First results of the robex analogue mission campaign: Robotic deployment of seismic networks for future lunar missions. In 68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017. International Astronautical Federation (IAF). Url: https://elib.dlr.de/118237/

[31]   L. Witte, A. Heffels, S. Jahnke, M. Knapmeyer, C. Lange, R. Rosta, et al.. A geophysical monitoring station for robotically deployed networks. In European Lunar Symposium 2017, Münster, Germany, May 2017. Url: https://www.sciencedirect.com/science/article/abs/pii/S0032063320302932

[32]   R. Qu, Y. Takei, M. Oda, H. Nakanishi, A. Wedler, and K. Yoshikawa. A study on the end-effector exchange mechanism of a space robot. In The 13th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Beijing, P.R.China, 2016. Url: https://robotics.estec.esa.int/i-SAIRAS/isairas2016/Session5a/S-5a-4-QuRui.pdf

[33]   C. Schmidt, C. Fuchs, J. Ramírez, J. Pacheco, M. Brechtelsbauer, A. Shrestha, et al.. Inter-island demonstration of optical communication links in robotic operations. In International Conference on Space Optics, Oktober 2016. Url: http://elib.dlr.de/108590/

[34]   M.J. Schuster, C. Brand, S.G. Brunner, P. Lehner, J. Reill, S. Riedel, et al.. The LRU rover for autonomous planetary exploration and its success in the spacebotcamp challenge. In IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2016. (Best Paper Award). Url: https://elib.dlr.de/105409/1/sbc_paper_v1.1_elib.pdf

[35]   S. Seriani, P. Gallina, and A. Wedler. A modular cable robot for inspection and light manipulation on celestial bodies. Acta Astronautica Journal, 123:145–153, June 2016. Url: http://www.evise.com/evise/faces/pages/navigation/NavController.jspx?JRNL_ACR=AA

[36]   C. Lange, L. Witte, R. Rosta, G. Tsakyridis, F. Sohl, M. Knapmeyer, et al.. Modular infrastructures as research platforms for lunar exploration. In Proceeding of the 66th International Astronautical Congress, Jerusalem, Israel, 2015. International Astronautical Federation.

[37]   D. Leidner, A. Wedler, and S. Music. Robotic deployment of extraterrestrial seismic networks. In Proc. of the 13th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), 2015. Url: http://robotics.estec.esa.int/ASTRA/Astra2015/Papers/Session%208A/96026%5FWedler.pdf

[38]   O. Porges, R. Lampariello, J. Artigas, A. Wedler, C. Borst, and M.A. Roa. Reachability and dexterity: Analysis and applications for space robotics. In Proc. of the 13th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), Mai 2015. Url: http://robotics.estec.esa.int/ASTRA/Astra2015/

[39]   R. Qu, Y. Takei, M. Oda, A. Wedler, and K. Yoshikawa. Study on development and practicality evaluation of space robot’s end-effector exchange mechanism. In Proceedings of the 59th Conference on Space Science and Technology, no. 59, Japan, 7 - 9 Oct. 2015. Url: http://ukaren.aero.kyushu-u.ac.jp

[40]   A. Wedler. International symposium on moon 2020-2030: a new era of coordinated human and robotic exploration. ESA Website (12/2015), Dec. 2015. Organisation Committees Member. Url: http://spaceflight.esa.int/humanrobotics/

[41]   A. Wedler, M. Hellerer, B. Rebele, H. Gmeiner, B. Vodermayer, T. Bellmann, et al.. Robex - components and methods for the planetary exploration demonstration. In Proc. of the 13th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), Mai 2015. Url: http://robotics.estec.esa.int/ASTRA/Astra2015/

[42]   A. Wedler, B. Rebele, J. Reill, M. Suppa, H. Hirschmüller, C. Brand, et al.. LRU - lightweight rover unit. In Proc. of the 13th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), May 2015. Url: http://robotics.estec.esa.int/ASTRA/Astra2015/

[43]   R. Haarmann, Q. Mühlbauer, L. Richter, S. Klinkner, C. Lee, C. Wagner, et al.. Mobile payload element (mpe): concept study of a small, outonomous and innovative sample fetching rover. In Proc. of the ASTRA -12th Symposium on Advanced Space Technologies in Robotics and Automation, 2013. Url: http://elib.dlr.de/82334/

[44]   A. Wedler, A. Maier, J. Reill, C. Brand, H. Hirschmüller, M. Schuster, et al.. Pan/tilt-unit as a perception module for extra-terrestrial vehicle and landing systems. In Proc. of the ASTRA -12th Symposium on Advanced Space Technologies in Robotics and Automation, no. 12th, The Netherlands, May 2013. ESA TEC-MMA. Url: http://robotics.estec.esa.int/ASTRA/Astra2013/Papers/wedler_2811409.pdf

[45]   A. Wedler, M. Chalon, K. Landzettel, M. Görner, E. Krämer, R. Gruber, et al.. Dlrs dynamic actuator modules for robotic space applications. In E.B.(.M. Space) and S.L. (NASA), eds., Proc. of the 41st Aerospace Mechanisms Symposium, no. 41 in Aerospace Mechanisms Symposium, Passadena - Hilton -JPL (USA), 2012. Url: https://esmats.eu/amspapers/pastpapers/pdfs/2012/wedler.pdf

[46]   M. Chalon, A. Wedler, A. Baumann, W. Bertleff, A. Beyer, J. Butterfass, et al.. Dexhand: A space qualified multi-fingered robotic hand. In Proc. IEEE Int Robotics and Automation (ICRA) Conf, pp. 2204–2210, 2011. Url: https://www.researchgate.net/publication/225025695_Dexhand_A_Space_qualified_multi-finge red_robotic_hand

[47]   A. Wedler. Adaptive passiv nachgiebige Systeme zum Einsatz in der Robotik, vol. Institut für Fertigungstechnik und Werkzeugmaschinen (Hannover): Berichte aus dem IFW ; 2011, Bd. 02 of 2. Garbsen : PZH, Produktionstechnische Zentrum, TEWISS (Verlag), IFW, Leibniz-Universität Hannover, Institut für Fertigungstechnik und Werkzeugmaschinen, 1 ed., 2011.

[48]   A. Wedler. Simulation of new leg concepts for a passively compliant hexapod robot. SIMPACK News, pp. 6–9, Dezember 2011. Url: http://elib.dlr.de/75258/

[49]   A. Wedler, M. Chalon, A. Baumann, W. Bertleff, A. Beyer, J.B. Robert Burger, et al.. Dlrs space qualifiable multi-figered dexhand. In Proc.:11th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), vol. 11, pp. Session 3a, ESA/ESTEC, Noordwijk, the Netherlands, 12 - 14 April 2011. ESA, ESA. Url: http://robotics.estec.esa.int/ASTRA/Astra2011/Papers/03B/FCXNL-11A06-2137590-1-2137590we dler.pdf

[50]   B. Rebele, A. Wedler, M. Apfelbeck, H. Hirschmüller, S. Kuss, A. Gibbesch, et al.. Advanced testbed and simulation environment for planetary exploration and mobility investigations. In ESA, i-SAIRAS, The 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Sapporo Convention Center, Sapporo, Japan, August 2010. Url: http://elib.dlr.de/77061/

[51]   M. Apfelbeck, S. Kuß, A. Wedler, A. Gibbesch, B. Rebele, and B. Schäfer. A novel terramechanics testbed setup for planetary rover wheel-soil interaction. In ISTVS, 11th European Regional Conference of the International Society for Terrain-Vehicle Systems, Oktober 2009. Url: http://elib.dlr.de/62703/

[52]   B. Denkena, J. Friederichs, and A. Wedler. kosepro - wirtschaftliche, adaptronische und sichere schlüsselkomponenten für die servicerobotik in der produktion. PZH Verlag, 2009. Url: http://elib.dlr.de/95436/

[53]   A. Wedler and G. Hirzinger. Mobilität in der teilautonomen exploration und manipulation visionen für (teil) autonome systeme auf ihrem weg ins all. In Lunar Base Symposium - Bauen für ein leben auf dem Mond, Fraunhofer-Zentrum, Kaiserslautern, Mai 2009. Url: http://elib.dlr.de/75257/

[54]   B. Denkena, J. Friederichs, A. Wedler, and O. Bertram. Safety mechatronics for industrial collision detection in human-machine interaction. In 53. Internationales Wissenschaftliches Kolloquium, pp. 51–52, September 2008. Url: http://elib.dlr.de/95443/

[55]   B. Denkena and A. Wedler. New compliant mc- kibben actuator driven by pneumatic actuators as a hexapod platform in robotic applications. In 10th Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA), no. 10, 2008. Url: http://robotics.estec.esa.int/ASTRA/Astra2008/S17_Poster_Exhibition/P08_Wedler.pdf

[56]   B. Denkena, A. Wedler, J. Friederichs, A. Hackbarth, and F. Hackelöer. New compliant hexapod tool for industrial robotic applications driven by pneumatic mckibben actuators. In 11th International Conference on New Actuators - 5th International Exhibition on Smart Actuators and Drive Systems, pp. 153–156, Juni 2008. Url: http://elib.dlr.de/95441/

[57]   B. Denkena, A. Wedler, A. Hackbarth, F. Hackelöer, and J. Friederichs. Hexapoder roboter mit mckibben muskeln als ausgleichs- und dämpfungseinheit für den einsatz von robotern in der produktion. In Roboter Kongress 2008, 2008. Url: http://elib.dlr.de/95819/

[58]   B. Denkena, P. Wratil, J. Friederichs, and A. Wedler. Sichere antriebsfunktionen für roboter - safety inside. wt Werkstattstechnik, ISSN 1436-5006:745–751, 2008. Url: http://elib.dlr.de/95439/

[59]   B. Schäfer, B. Rebele, M. Schedl, M. Görner, A. Wedler, R. Krenn, et al.. Light-weight mechatronics and sensorics for robotic applications: A dlr perspective. In Proceedings of i-SAIRAS 2008 - 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Februar 2008. Url: http://elib.dlr.de/55362/

[60]   B. Denkena, B.A. Behrens, P. Hesse, J. Friederichs, A. Wedler, M. Ahrens, et al.. Mechatronische ausgleichsund dämpfungseinheit für den einsatz von robotern in der produktion. In GMA-Kongress 2007: Automation im gesamten Lebenszyklus, Kongress Baden-Baden, 12. und 13. Juni, 2007.

[61]   B. Denkena, P. Hesse, J. Friederichs, and A. Wedler. Adaptronische und sichere schlüsselkomponenten im anwendungsgebiet moderner automation. In GMA-Kongress 2007: Automation im gesamten Lebenszyklus, Kongress Baden-Baden, VDI-Berichte 1980, pp. 865–873, Juni 2007. Url: https://elib.dlr.de/95449/

[62]   B. Denkena, P. Hesse, J. Friederichs, and A. Wedler. Schlüsselkomponenten für roboter in der produktion roboterhaut und sicherheitskonzept für die mensch-roboter kooperation. pp. 158–162. Springer Berlin Heidelberg, Januar 2007. Url: http://elib.dlr.de/95437/

[63]   B. Denkena, P. Hesse, J. Friederichs, and A. Wedler. Roboterhaut und Sicherheitskonzept für die Mensch-Roboter Kooperation, vol. ISBN 978-3-540-74763-5 of Schlüsselkomponenten für Roboter in der Produktion, pp. 158–162. Springer Berlin Heidelberg, 2007. Url: http://elib.dlr.de/95820/

[64]   B. Denkena, A. Wedler, and J. Friederichs. A compliant actor driven by pneumatic actuators: Co-simulation using msc.adams and matlab/ simulink. In MSC - ADAMS Workshop for advanced Simulation EMEA, Oktober 2007.

[65]   B. Denkena, B.A. Behrens, P. Hesse, J.O. Friederichs, A. Wedler, E. Cicek, et al.. Adaptronische und sichere schlüsselkomponenten für die servicerobotik in der produktion: kosepro. Technical report, BMBF Statustagung, Förderungsinitative: Leitinovation Robotik, KoSePro Statusbericht, 2006.

[66]   A. Wedler and F. Oszwald. Development of a bioinspired insect leg. Diplom thesis - esa documet number: D7 317, ESA, European Space Agency - Mechatronik Zentrum Hannover, University of Hannover, 2004.

[67]   A. Wedler and F. Oszwald. Development of a bioinspired insect leg. In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation - ASTRA 2004, 2004. Url: http://robotics.estec.esa.int/ASTRA/Astra2004/Papers/astra2004_I-10.pdf

 

 

Zuletzt aktualisiert: Dienstag, 18. Oktober 2022 von Dr. -Ing. Armin Wedler