Overview of the DLR RailwayDynamics Library

A. Heckmann, M. Ehret, G. Grether, A. Keck, D. Lüdicke, C. Schwarz
DLR German Aerospace Center
Institute of System Dynamics and Control
Oberpfaffenhofen, Germany
Contents

- Background and Motivation
- Library, Model and Data Structure
- Railway Modeling Particularities
- Applications
 - Traction
 - Comfort
 - Roller Rig
- Multidomain Modeling
- Conclusions
Background and Motivation

- DLR‘s historical background in multibody and railway dynamics
- DLR‘s Next Generation Train Project
 - Running gear development for an ultra high-speed train in double deck configuration and lightweight design, see video
- Several precursor papers

 - 2012: Energy Flows in Networks
 - 2014: Wheel-Rail Contact
 - 2015: Scaled Running Gear
 - 2017: Crosswind Stability
 - 2018: Brake Pneumatics
 - 2019: Railway Dynamics Library

- Objectives
 - Gathering, reorganizing and publishing given models
 - framework for future multidomain engineering tasks
Library, Model and Data Structure (I)

- General subpackage
 - 3D multi-purpose models
 - traction, comfort, safety, roller rigs, ...
- 3 specialized subpackages
 - Vertical ⇒ comfort
 - Longitudinal ⇒ traction
 - Crosswind ⇒ simplified crosswind assessment
- Vehicle template
 - Railroad base, running gears, carbody
Library, Model and Data Structure (II)

- General subpackage
 - 3D multi-purpose models traction, comfort, safety, roller rigs, …
- 3 specialized subpackages
 - Vertical ➞ comfort
 - Longitudinal ➞ traction
 - Crosswind ➞ simplified crosswind assessment
- Vehicle template
 - Railroad base, running gears, carbody
- Data Structure
 - Replaceable encapsulated records
Railway Modeling Particularities

Overview

- Track (inner/outer)
 - 3D curve $\vec{r} = \vec{r}(s)$, collateral frame
 - rail position and orientation
 - irregularities
- Track joint
 - Longitudinal degree of freedom
 - 2 states: s, v
- Track panel
 - accompanying mass-spring-damper system
 - 2 rail stubs and sleeper
- Wheelset
 - 5 degrees of freedom
 - Inertia properties
- Wheel-Rail contact
 - UIC60 and S 1002 predefined
 - Linear and Polach model predefined
Railway Modeling Particularities (I)
Track: some details

File format from the early 90's
Railway Modeling Particularities (II)

- Wheel reference frame
- Tape circle
- Taper line distance
- Rail tread
- Rail reference frame
- Rail gauge

- Gauge: 1.435 m
- Gauge offset: 0.072 m
- Inclination: 1/40
Railway Modeling Particularities (III)

Track:

```
```

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>redeclare verticalIrregularity</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_min</td>
<td>1e-3</td>
<td>minimal distance frequency to consider</td>
</tr>
<tr>
<td>f_max</td>
<td>10</td>
<td>maximum distance frequency to consider</td>
</tr>
<tr>
<td>n_f</td>
<td>1024</td>
<td>sampling of spectrum w.r.t frequencies</td>
</tr>
<tr>
<td>samplingMethod</td>
<td>linear</td>
<td>method of frequency sampling</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>time constant to smooth onset</td>
</tr>
<tr>
<td>onset</td>
<td></td>
<td>initial onset of excitation</td>
</tr>
<tr>
<td>globalSeed</td>
<td>97215</td>
<td>Global seed to initialize random phase generator</td>
</tr>
<tr>
<td>localSeed</td>
<td>104976</td>
<td>Local seed to initialize random phase generator</td>
</tr>
<tr>
<td>b</td>
<td>7.343623e-7</td>
<td>numerator of the polynomial that specifies PSD</td>
</tr>
<tr>
<td>a</td>
<td>0.00028855,0.6803895,0.1</td>
<td>denominator of the polynomial that specifies PSD</td>
</tr>
<tr>
<td>scale</td>
<td>1</td>
<td>map specification units to SI</td>
</tr>
<tr>
<td>angular</td>
<td>true</td>
<td>polynomial specification w.r.t. angular frequency</td>
</tr>
</tbody>
</table>

```
redeclare Excitation.Irregularities.Lateral.Default lateralIrregularity
```
Railway Modeling Particularities (I)
Contact: some details
Railway Modeling Particularities (II)

Contact: some details
Railway Modeling Particularities (III)
Contact: some details

- **Name**: rollingRight
- **Comment**:

Model
- **Path**: RailwayDynamic
- **Comment**: elastic contact

General
- **Tangential Contact**
- **Normal Contact**
- **Add modifiers**
- **Attributes**

nonLinearTangentialContact: false, true

- **mue_0**: 0.36
- **A**: 0.38
- **B**: 0.2
- **k_A**: 0.9
- **k_S**: 0.5

eval_NonLinearTangentialContact: Polach Cor

Maximum friction coefficient at zero slip velocity
Ratio of friction coefficient
Coefficient of expotential friction decrease
Friction reduction in adhesion area
Friction reduction in slip area
Applications: Traction

• Estimate longitudinal forces & oscillations during braking and accelerating
 ➢ Use reduced models: simulate large systems (e.g. freight train with 50 cars)

<table>
<thead>
<tr>
<th>Example: Train with 5 cars</th>
<th>CPU-s/s</th>
<th>Number of states</th>
</tr>
</thead>
<tbody>
<tr>
<td>General models only</td>
<td>69.5</td>
<td>605</td>
</tr>
<tr>
<td>Mixed: 1 car 3D + 4 cars 1D</td>
<td>6.65</td>
<td>157</td>
</tr>
<tr>
<td>Longitudinal models only</td>
<td>0.08</td>
<td>51</td>
</tr>
</tbody>
</table>

➢ Peaks of coupler forces occur at beginning of brake and acceleration phases
➢ Simulation results of different models coincide
Applications: Comfort

\[S(\Omega) = \frac{b_0 + b_1 \Omega^2}{a_0 + a_2 \Omega^2 + a_4 \Omega^4 + a_6 \Omega^6} \]

\[f = \frac{\Omega}{2\pi} \left[\frac{1}{m} \right] \]

<table>
<thead>
<tr>
<th></th>
<th>CPU-s/s</th>
<th>(N_{\text{MVZ}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter vehicle</td>
<td>1.58</td>
<td>0.63</td>
</tr>
<tr>
<td>Full vehicle</td>
<td>9.08</td>
<td>0.43 ... 0.83</td>
</tr>
</tbody>
</table>
Applications: Roller Rig (I)

Knorr Bremse, Munich

Luccini

wheel radius [m]: 0.46
roller radius [m]: 1.5
initial velocity [m/s]: 33

lateralLoad
riseTime=2

primarySuspension

wheelset

roller

railway

fixedRotation
Applications: Roller Rig (II)
Multidomain Modeling
VehicleInterfaces Library reloaded
Multidomain Modeling
Alternative Proposal
Conclusions

• The DLR RailwayDynamics Library covers railway dynamics.
• Different levels of details up to realtime capability: SiL, HiL
• Synthesis of advanced observer and controller lay-outs
• Multidomain modeling in one consistent environment
 • Pneumatics: brakes, air suspensions
 • Power trains: electric, Diesel-hydraulic, Diesel-electric
 • Regeneration of electric energy
 • Adhesion and interaction of traction and power-train
 • Auxiliary systems
 •