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Abstract. This article describes an algorithm for pose or motion es-
timation based on clustering of parameters in the six-dimensional pose
space. The parameter samples are computed from data samples randomly
drawn from stereo data points. The estimator is global and robust, per-
forming matches to parts of a scene without prior pose information. It
is general, in that it does not require any particular object features.
Empirical object models can be built largely automatically. An imple-
mented application from the service robotic domain and a quantitative
performance study on real data are presented.

1 Introduction

Estimation of the pose of known objects in unknown scenes is a basic problem
within many robotic applications. It arises not only in the context of object
manipulation but also of self localization and navigation in a known environment.
Moreover, the problem of pose estimation is mathematically and algorithmically
equivalent to the one of motion estimation of objects or of the sensor itself
relative to the environment. The only difference between the two problems is
that for pose estimation, one of the two data sets that have to be registered is a
priori known as the model of the object or the environment.

Data acquired from a natural scene do not exclusively contain a single known
object, and two data sets in a motion sequence do not completely overlap. The
estimator hence needs to be robust in the statistical sense, that is, it must select
in the estimation process that part of the data that does match between two
sets. Moreover, usually the detailed correspondences, on the level of features
or data points, even between the overlapping parts of two data sets, are not
reliably known and must be established during estimation. The combinatorics of
the correspondence problem can give rise to a very high proportion (approaching
100%) of effective outliers.

The estimation problem considered in this paper takes the correspondence
and outlier problems to the extreme, in that i) no prior knowledge of object
pose is assumed, i.e., we aim at global pose estimation, and ii) no distinctive
or high-level object features are used, such that one is faced with a very large
number of possible correspondences between simple data points. Such simple
data points can be, e.g., image points with a gradient value above a threshold,



edge and corner points [1], or range-data points from stereo or laser imaging.
The advantage of using simple data rather than distinctive features is the gen-
eral applicability to all kinds of objects and under a broad range of imaging
conditions. Distinctive features, on the other hand, require either the objects
of interest to possess certain characteristics (sharp edges, corners, colors, etc.)
or that the imaging conditions (viewpoint, lighting) do not significantly change
(appearance-based features, SIFT [2] and its variants).

There are various ways in which the present estimation algorithm relates to
methods used previously in pattern recognition. In fact, it may be understood
as

– a continuous version of a randomized, generalized Hough transform,
– a density estimator in parameter space,
– a clustering procedure for parameter hypotheses.

Like parameter clustering in general, the method is based upon robust statistics
in parameter space [3–8], as opposed to methods that rely on statistics in data
space [9]. The technique belongs to the class of non-parametric estimators, as
no parametric models of the underlying probability densities are assumed.

In the following section, the algorithm is described in some detail. The sec-
tion on experiments gives an example application to object manipulation that
regularly runs in our lab and a quantitative analysis of its performance on stereo
data.

2 The algorithm

The algorithm discussed in this paper is based upon range data. Other algorith-
mic variants of the same principle of pose clustering may process other types of
data. The range data is here obtained from a stereo algorithm that computes
local correspondences in an image pair from five partly overlapping correlation
windows [10]. The outcome of stereo processing is a point cloud with data points
largely restricted to surface creases, sharp bends, and depth discontinuities. Typ-
ical artifacts from correlation-based stereo processing are also present, such as
blurring of depth discontinuities and unstable depth values for edges nearly par-
allel to the epipolar lines; see figs. 2 and 3.

The algorithm for object detection and pose estimation may be described as
a sequence of three distinct steps:

1. model generation,
2. parameter sampling,
3. parameter clustering.

Model generation is an empirical process that runs offline and may hence be
regarded as a training step for the algorithm. Sampling and clustering of param-
eters are the actual processing steps for scene data that need to run in real time.
This section describes each of these three steps in turn.



2.1 Model generation

In a training phase, data of the sought objects are collected by the same sens-
ing process that is used later for recognition. In the present case, we collect
range data points produced by the stereo algorithm. Depending on the object’s
complexity, between two and, say, ten different views of the object are acquired.
Different views are registered in an object coordinate system by an external pose
measurement device, e.g., a robot. Alternatively, given sufficient overlap between
the data sets, a registration of the different views may be achieved by the very
same algorithm used later for pose estimation.

Data from different views are fused by discarding all points that are not
stable under view variation. More precisely, an intersection is computed of each
data set in turn with all the remaining data, allowing for a tolerance of a few
millimeters for two data points to be considered the same. These intersection
sets are collected into the final data set. Formally, given data sets D1, D2, . . . , Dn

acquired from different object views, the model point set M is constructed as

M = ∪n
i=1

[
Di ∩

(
∪n

j=1
j 6=i

Dj

)]
= ∪n

i,j=1
i6=j

(
Di ∩Dj

)
, (1)

where the intersection tolerates small point differences. This procedure effectively
removes view-dependent artifacts of the sensing process, creating an idealized
data point set of the object. The point set M along with the lines of sight for
each point constitute the object model to be matched against scene data. The
object model can be built largely automatically with a robot that moves the
sensor on the viewing sphere around the object of interest.

2.2 Parameter sampling

In order to produce a number of pose hypotheses, data samples are drawn from
a scene point set S and a model point set M from which pose parameter samples
are computed. A pose hypothesis can be computed from a minimum subset of
three scene points matched against a subset of three model points. The sampling
proceeds thus as follows.

1. Randomly draw a point triple from S.
2. Randomly draw a point triple from M among all triples that are consistent

with the triple drawn from S.
3. Compute the rigid motion between the two triples in a least-squares sense.
4. Compute the six parameters of the hypothetical motion.

The parameter samples thus obtained are collected into a spatial array or a
tree of buckets, from where they can be efficiently retrieved for the subsequent
clustering step. The sampling process stops as soon as a significant number of pa-
rameter samples has accumulated anywhere in parameter space. This condition
is pragmatically taken as fulfilled when one of the buckets is full. In numbers,
from stereo data sets with 104 to 105 points on the order of 106 point triples are
drawn.



Corresponding data points from M and S can be found among geometrically
consistent groups of points. For drawing consistent point triples in sampling
step 2, one has to exploit the constraints that arise from rigid motion. These
are i) approximate congruence of the triangles defined by the point triples and
ii) view point consistency. The latter means that the plane defined by three
simultaneously visible points on a non-transparent solid shape generally exposes
the same side to the sensor. Exceptions may occur, e.g., for triples that span
holes through a shape. Although the view point constraint does not hold for all
points on all shapes under arbitrary motion, it is a useful criterion for guiding
the sampling process.

The constraints are enforced by building a hash table of point triples from
the model M , which may in fact be done offline as part of the model generation
process. The table is accessed through a key that encodes a triple’s geometry in
relation to the sensor. Given three range data points r1, r2, r3 ∈ R3 and their
lines of sight l1, l2, l3 ∈ R3, a suitable key (k1, k2, k3) ∈ R3 is

k1

k2

k3

 =



 ||r2 − r3||
||r3 − r1||
||r1 − r2||

 if
[
(r2 − r1)× (r3 − r1)

]T (l1 + l2 + l3) > 0 , ||r2 − r3||
||r1 − r2||
||r3 − r1||

 else,

(2)

where || · || denotes the Euclidean norm. When building the hash table, each
model point triple is entered for the key (k1, k2, k3) and its cyclic permuta-
tions (k2, k3, k1), (k3, k1, k2); when sampling from the scene data, just one of
the permutations is used for indexing into the hash table. Through the hashing
procedure, consistent scene-model pairs of point triples can be efficiently drawn.

In step 3 of the sampling procedure, the least-squares rotation R∗ ∈ SO(3)
and translation t∗ ∈ R3 between two point triples r1, r2, r3 ∈ M and r′1, r

′
2, r

′
3 ∈

S are computed, i.e.,

(R∗, t∗) = arg min
(R,t)∈SE(3)

3∑
i=1

||R ri + t− r′i||2 . (3)

The method in [11] provides a solution, based on quaternions, that is specifically
tailored to the three-point case and hence more efficient than the general ones,
like the popular method based on singular value decomposition. If the three point
pairs (ri, r

′
i) are approximately corresponding between M and S, the motion

hypothesis (R∗, t∗) will be close to the true object pose.
The choice of parameterization of motions in sampling step 4 is relevant

for the clustering of motion hypotheses. Indeed, the result of clustering depends
upon the parameter space used. A proper choice is one that respects the topology
of the Euclidean group SE(3) [8]. Let α ∈ R3 be the exponential/canonical
parameters of the rotation R∗, that is, ||α|| is the angle and α/||α|| the oriented
axis of R∗. The parameters ρ ∈ R3 of rotations used here are related to the



canonical parameters through

ρ =
(
||α|| − sin ||α||

π

)1/3
α

||α||
, (4)

that is, a non-linear re-mapping of the rotation angle. Its desirable properties
derive from the fact that the invariant Haar measure of the rotation group SO(3)
is uniform in the parameters ρ, such that there is no bias of pose clustering
incurred from the group topology. This kind of parameterization has therefore
been called consistent [8]. Translations are consistently parameterized simply by
their three vector components τ = t∗.

2.3 Parameter clustering

Significant populations of scene points in S matching a rigid motion of the
model points M will produce many parameter samples p = (ρ, τ ) ∈ R6 that
coincide approximately. The goal of parameter clustering is hence to estimate the
location in parameter space of the maximum probability density underlying the
obtained parameter samples {p1,p2, . . . ,pN} [8]. A practical realization, derived
from kernel density estimation, is through the mean-shift procedure [12]. More
precisely, a sequence of pose parameters p1,p2, . . . is obtained through iterative
weighted averaging

pk =
∑N

i=1 wk
i pi∑N

i=1 wk
i

, (5)

wk
i = u

(
||ρk−1 − ρi||/rrot

)
u
(
||τ k−1 − τ i||/rtrans

)
. (6)

Here u is a unit step function,

u(x) =
{

1 if x < 1,
0 else, (7)

such that the averaging procedure (5) operates just on a neighborhood of pk−1.
The required parameter samples can be efficiently retrieved from buckets indexed
by pk−1; cf. sec. 2.2. The radii rrot and rtrans of the rotational and translational
extensions, respectively, of the averaging procedure can be adapted to the local
parameter density: a higher density affords smaller radii.

The sequence pk converges to an estimate of the position of a local den-
sity maximum [12], even though the density of parameters is not explicitely
estimated. By starting with p0 close to the dominant mode of the density, the
sought pose estimate p̂ = limk→∞ pk is thus obtained. The region of the domi-
nant mode, in turn, is estimated from a histogram of pose parameters. Further
modes may be explored in an analogous fashion in order to identify additional
object instances.



3 Experiments

3.1 An application scenario

The algorithm has been integrated into a humanoid robot system [13] which
is used for studying bi-manual manipulation. In particular, scenes composed of
carafes, bottles, jars, and glasses are visually analyzed to autonomously per-
form a sequence of actions such as preparing a drink; see fig. 1. This kind of
demonstration runs regularly in our lab.

Fig. 1. DLR’s humanoid robot ‘Justin’ (upper body only) preparing a drink: after
recognition of the scene unscrewing the lid from a jar of instant tea, dropping some
grains of tea into a glass, and adding water from a carafe.

Figure 2 shows a typical scene as viewed through one of the head-mounted
stereo cameras and the stereo data with the recognized objects. Pose estimation
is performed on the complete data set, that is, without prior segmentation into
the three object components and the table component. The transparent objects
are an example where reliable extraction of more distinctive features than the
raw stereo data can be a severe problem.

3.2 A quantitative study

A quantitative analysis of pose estimation accuracy was carried out for a card-
board grid box (approximate dimensions: 170× 170× 50 mm) that can contain
metal pieces; see fig. 3. For model building, an empty box was used. As test



Camera image Data frontal view

Data side view

Fig. 2. Scene with objects used by the humanoid ‘Justin’ (cf. fig. 1) for preparing an
instant-tea drink: camera image and stereo data points (white) superposed with model
points of the recognized objects (colored).

Data top viewCamera image

Fig. 3. Scene with a cardboard grid box used for quantitative evaluation of pose esti-
mation accuracy: camera image and stereo data points (white) superposed with model
points of the box (red).



scenes, stereo data of the partially filled box from 10 different views were ac-
quired, while a robot moved the stereo cameras around. Using the known motion
of the robot between views, all the data sets were registered in a common coor-
dinate system. As a result, the pose that had to be estimated was numerically
the same for all sets.

However, a ground truth for the box pose was not available, both for prac-
tical and for principle reasons. Practically, it is hard to rely on any other pose
measurement to be significantly more accurate than the one we want to test such
that it could define the reference pose. Moreover, in principle it is hard to define
a true pose for a deformable object such as the cardboard box, as in any setting
it will slightly differ in shape from the empty box seen at modeling time.

Avoiding these problems, two kinds of error statistics are here presented. One
uses the median of all pose estimates as the reference pose pref to estimate the
expected error E(||p̂− pref ||). The other is based on the covariance matrix

C = E
{

[p̂− E(p̂)] [p̂− E(p̂)]T
}

(8)

and estimates the square root of the total variation TrC, which is a lower bound
on the expected quadratic error

E(||p̂− ptrue||2) = E[||p̂− E(p̂)||2] + ||E(p̂)− ptrue||2 ≥

E[||p̂− E(p̂)||2] = E{Tr [p̂− E(p̂)] [p̂− E(p̂)]T } = Tr C . (9)

Here ptrue is the true pose parameter and the neglected term ||E(p̂)−ptrue||2 is
the squared bias of the estimator. Both error statistics are computed for the
rotational and translational parameters separately, because of their different
physical dimensions.

Pose estimates were computed either in a single stage or in two stages: the
first stage estimated the box rotation and translation in their joint 6D parameter
space; an optional second stage attempted to refine the translation estimate in
its 3D parameter space while keeping the estimated rotation fixed. Different
resolutions of parameter space analysis were investigated: the sizes of parameter
buckets, histogram bins, and mean-shift radii took identical rotational values
{0.02, 0.03, 0.04, 0.05}1 with their translational value fixed at 30 mm for the first
stage of estimation, and with identical translational values {5, 10, 15} mm for the
second stage. Estimator variants with only the first stage and with both stages
were run on the test data, making a total of 16 tested variants. Run times of
the estimators were recorded for a C++ implementation on a single CPU at 3.0
GHz. The measured times included building of the model hash table.

For each of the 10 box views, 100 data sets were acquired, yielding a total of
1000 pose estimates. Plots of the two kinds of error statistics, each for rotation
and translation estimates, versus expected run time for the 16 estimator variants
are presented in fig. 4. There are five main observations to be noted.

1 The full rotational parameter range is the unit sphere; cf. eq. (4).



– The two kinds of error statistics agree, suggesting they are both reasonable
error measures for the estimates.

– The accuracy of the estimator is sufficient for manipulation tasks across all
tested variants.

– There is a trade off between rotational and translational accuracy.
– The highest rotational accuracy was achieved by estimators with the highest

rotational resolution; the highest translational accuracy was achieved by the
estimator with the lowest rotational resolution and the medium translational
resolution in the second estimation stage.

– The run time increases for estimator variants with higher resolution of pa-
rameter space analysis; rotational resolution is much more expensive than
translational resolution.
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Fig. 4. Plots of error statistics versus run time statistics for the 16 tested variants
of pose estimator: expected error E(||p̂ − pref ||) (bars indicate standard errors of the
expectation values) and total deviation

√
Tr C, each for rotation and translation pa-

rameters.

The last observation can be explained by the fact that smaller buckets in
parameter space need more sampling in order to get significantly filled. Sampling
of full pose parameters is much more expensive than of just translations, as done
in the second stage of estimation, which is why the translational resolution has
less effect on run time than the rotational resolution in the present statistics.

A less intuitive result is the apparent trade off between rotational and trans-
lational accuracy. This suggests that, for the range of estimator variants here



investigated, the allover estimation error does not greatly vary but is merely dis-
tributed to varying proportions between the rotational and translational degrees
of freedom. As a consequence, one should use different variants of the estima-
tor for rotational and translational parameters. This point, however, deserves
further investigation.

It should be noted that the run times given are mainly a relative measure of
the costs of the estimator variants. The absolute timings can be greatly improved
by i) distributing parameter sampling and clustering across several CPUs, ii)
building the model hash tables before execution of the estimators, and iii) some
additional algorithmic optimizations.
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Schäffer, A., Brunner, B., Hirschmüller, H., Kielhöfer, S., Konietschke, R., Suppa,
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