Bayesian Deep Learning for Introspective Robot Perception

Jongseok Lee

KROS-Europe 2022

Knowledge for Tomorrow

DLR Aerial Robotics: Aerial Manipulation

DLR Aerial Robotics: Planetary Exploration

DLR

DLR Aerial Robotics: Solar Powered UAVs

On Importance of Reliability and Robustness of a Perception System

- Field robotics applications outdoor environments.
- Safety critical systems both at research and industry levels.

How to leverage Deep Learning techniques from computer vision research to robotic perception?

Returning Distributions Rather Than A Single, Most Likely Guess.

S. Thrun et al, "Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Mineva", IJRR 2000.

- Probabilistic robotics at the age of deep learning.
- Major challenges lie in uncertainty quantification of neural network.

- Bayesian learning of posterior: $p(w|X,Y) \propto p(y|X,w)p(w)$
- Prediction: $p(y^*|X, Y, x^*) = \int p(y^*|x^*, w) p(w|X, Y) dw$

Bayesian Neural Networks -- Tishby et al "Consistent inference of probabilities in layered networks: Predictions and Generalization", 1989 IJCNN

• Bayesian learning of posterior: $p(w|X, Y) \propto p(y|X, w)p(w)$

Major challenges in curse of high dimensionality!

• Prediction: $p(y^*|X, Y, x^*) = \int p(y^*|x^*, w) p(w|X, Y) dw$

Bayesian Neural Networks -- Tishby et al "Consistent inference of probabilities in layered networks: Predictions and Generalization", 1989 IJCNN

Overview of PhD Research

Overview of PhD Research

Lee et al, "Bilateral Teleoperation of Aerial Manipulators with Virtual Reality from Robotic Perception and Active Learning" (Under Review at Field Robotics)

SAM – The Latest Generation of DLR Aerial Manipulators

Deployment and Retrieval of Inspection Robotic Crawler [1]

Valve Closing in Air [2]

[1] Lee et al, "Visual-Inertial Telepresence for Aerial Manipulation" ICRA 2020.[2] Balachandran et al, "Shared Controller for Aerial Manipulation" (in preparation)

Virtual Reality from Robotic Perception

• If known geometry: combination of marker tracking and visual-inertial SLAM.

- If unknown geometry: combination of surface reconstruction and dynamic Lidar SLAM.
- Object detector is based on deep learning.

Towards Industrial Applications

• What could be the practical problem in this context?

Active Learning using Bayesian Neural Networks

[1] Ren et al, "A Survey of Deep Active Learning" ACM Computing Surveys 2022. *Optimal Experiment Design[2] Lee et al, "Estimating Model Uncertainty of Neural Networks in Sparse Information Form" ICML 2020.

Active Learning Results: Redundancy in the Data

• Main Take-Away: Lots of redundancy in the data; Only 25% could be good enough.

Active Learning Results: Uncertainty Estimates

• Well-calibrated uncertainty estimates matters for performance of active learning in practice.

Outdoor Flight Experiments and Operations at Night

- Over 68 successful experiments in different locations, users, seasons and lightning.
- Between 1.82-1.83 faster task execution time with the VR system when compared to only camera.

Conclusion

- Uncertainty quantification in neural network predictions for robotic perception.
- Bayesian Deep Learning = Bayesian reasoning applied to neural networks.
- Challenging due to high dimensional weight space.
- Overview of my PhD priors, posteriors and predictions, designed for robotic perception.
- Active learning applied to VR-based teleoperation system for aerial manipulation.

Main take-away: data preparation is a practical problem, and probabilistic approach through uncertainty modelling can help in obtaining a solution with active learning.

Thank you for listening!

DLR Supervisors

Mobile Robots Team

Perception and Cognition department

EU2020 AEROARMS and SAM Team

Many other colleagues

