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• Neural Networks are parameterized functions:

• Main idea is to learn a composition of functions or layers.

• Typically, trained with a maximum likelihood principle (point estimates) 

by optimizing some loss function using stochastic gradient descent. 

• The result is a set of most likely parameters that explains the data. 

Motivation: Neural Networks Revisited 
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Parameters or weights



Neural Networks with many layers (deep learning) are useful but:

• Can you train neural networks with better generalization?

• Can you efficiently learn by leveraging prior experiences?

• Can you design architectures without trial and error only?

• Can you reduce computational complexity?

• Can you trust it? Or, represent well-calibrated uncertainty?

Bayesian Neural Networks brings Bayesian reasoning to deep learning and 

might be useful for reducing overfitting, uncertainty estimates, etc.

Motivation: Challenges in Deep Learning
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• Bayesian Reasoning?

Probability distribution as your belief rather than frequency.

Dealing with uncertainty about your model (e.g. model parameters).

• When applied to neural networks, parameters have distributions.

What is Bayesian Neural Networks?
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Given that …

• Data:

• Parameters     are weights of neural networks.

Then, instead of trying to find a set of most likely parameters:

• Define prior:

• Bayesian learning of posterior:

• Prediction:

What is Bayesian Neural Networks?
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Aim: Understanding the basics related to Bayesian Neural Networks

1. Point Estimates Vs Model Uncertainty  

2. On Priors of Bayesian Neural Networks.

3. On Posteriors of Bayesian Neural Networks.

4. On Predictions with Bayesian Neural Networks.

5. Bayesian Deep Learning.

Disclaimer: very active area of research – we cover only the basics.
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Many learning algorithms such as Deep NNs or Support Vector Machines 

only determine one optimal (or most likely) set of model parameters.

E.g.:                                                                                                   (MLE)

or:                                                                                                   (MAP)

Point Estimates
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Example with a linear classifier (e.g. a SVM):

• Binary classification

• Aim: predict the label of a sample that is far from the training data set.

Point Estimates: Example
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Example with a linear classifier (e.g. a SVM):

• Binary classification

• Aim: predict the label of a sample that is far from the training data set.

Point Estimates: Example
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The right answer is to say “I do not know.“

Point Estimates Vs Model Uncertainty 
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predictive distribution

Prediction with a weighted average



Many learning algorithms such as Deep NNs or Support Vector Machines 

only determine one optimal (or most likely) set of model parameters.

E.g.:                                                                                                   (MLE)

or:                                                                                                   (MAP)

Instead, Bayesian methods consider a distribution over model parameters

and take the average:

This motivates to take model uncertainty into account, instead of MAP.

Point Estimates Vs Model Uncertainty 

> Lecture > Author  •  Document > DateDLR.de  •  Chart 12



Aim: Understanding the basics related to Bayesian Neural Networks

1. Point Estimates Vs Model Uncertainty  

2. On Priors of Bayesian Neural Networks.

3. On Posteriors of Bayesian Neural Networks.

4. On Predictions with Bayesian Neural Networks.

5. Bayesian Deep Learning.

Tables of Contents

> Lecture > Author  •  Document > DateDLR.de  •  Chart 13



Given that …

• Data:

• Parameters     are weights of neural networks.

Then, Instead of trying to find a most likely parameters:

• Define prior:

• Bayesian learning of posterior:

• Prediction:

Recap on Bayesian Neural Networks
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• PAC (Probably Approximately Correct) Bayes:

• Q and P can be posterior and prior distributions.

• 𝑹 𝑸 a true risk and ෡𝑹 𝑸 an empirical risk for sample size 𝒎. 

• 𝑲𝑳(𝑸| 𝑷 defines KL divergence (similarity) between two distributions.

• For any 𝜹 > 0, PAC Bayes shows a bound to true risk.

On Priors: Why important?
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• PAC (Probably Approximately Correct) Bayes:

• Mostly frequentist paradigm, but can be viewed as Bayesian too.

• Set P to be the prior distribution, and Q to be the posterior distribution.

• Generalization of a learner (how close you are to a true risk), depends on 

how well you fit the data ෡𝑹 𝑸 and how you are constrained to 𝑲𝑳(𝑸| 𝑷 .

On Priors: Why important?
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• Specifying the prior distribution is required for Bayesian methods.

• If you have enough data, likelihood  may dominate the posterior and so, a 

reasonable prior could work in practice.

• If you do not have enough data, mis-specifying the prior can lead to mis-

specified posterior. But, if the prior is good, we might get better 

generalizable models.

• For Deep Neural Networks, specifying a good prior is unintuitive and 

largely a not solved problem.

• Still, Bayesian’s averaging way of predictions can be beneficial over 

merely using point estimates.

On Priors: some thoughts
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• So, a standard procedure is to use a normal prior:

• In the context of deep learning, this implies:

• Equivalent to a weighted l2 regularization on neural network weights 

when training a point estimate.

On Priors: A Good Default?
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Given that …

• Data:

• Parameters     are weights of neural networks.

Then, Instead of trying to find a most likely parameters:

• Define prior:

• Bayesian learning of posterior:

• Prediction:

Recap on Bayesian Neural Networks
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• Bayes rule tells us how to do inference 

about hypothesis (uncertain quantities)

from data (measured quantities).

• Learning and predictions can be seen as

forms of inference.

On Posteriors: Bayes Rule Revisited
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• Posterior Distribution:

• Evidence Term:

• No conjugate priors – no analytical form for the posterior.

• Solving the integral over large quantities – intractable.

• Need Approximate Bayesian Inference techniques.

On Posteriors: The problem of integrals.
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On Posteriors: An Example
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On Posteriors: An Example
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On Posteriors: An Example
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Aim: model the
parameter posterior

But: This can not be done efficiently in 
closed form!

On Posteriors: An Example



In the literature, there are different principles: 

1. Variational inference (next lectures)

Find a tractable distribution q that approximates p, e.g. in terms of the

KL-divergence – through optimization: 

On Posteriors: How to approximate it?
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In the literature, there are different principles: 

2. Sampling Methods (next lectures)

Generate samples from the posterior distribution:

On Posteriors: How to approximate it?
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On Posteriors: How to approximate it?
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posterior

In the literature, there are different principles: 

3.   Laplace Approximation

Approximate the posterior at its mode with a Normal distribution.



Step 1: Train a neural network with point estimates.

Recall that you can solve this optimization problem using stochastic 

gradient descents or some variants of it.

On Posteriors: Laplace Approximation
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E.g.:                                                                                                   (MLE)

or:                                                                                                   (MAP)



Step 2: approximate the log-posterior using the second-order Taylor 

expansion:

where H is the Hessian matrix: 

On Posteriors: Laplace Approximation
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Note: we are omitting the prior term

for simplicity in derivation.
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𝟏

𝟐
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Step 3: Taking the exponential on both sides:

On Posteriors: Laplace Approximation
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Step 3: Taking the exponential on both sides:

This is an unnormalised Gaussian. and the normaliser is

On Posteriors: Laplace Approximation
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• Posterior Distribution:

• Evidence Term:

• Computing the Hessian matrix involves taking 2nd order derivative.

• However, the Hessian matrix for deep neural networks is too large!

E.g. if you have 1 million parameters, the Hessian matrix is a matrix of size 

1 million by 1 million. Then, how to compute such large matrix?

• A short-cut is to approximate the Hessian matrix, using Fisher 

Information or Gauss Newton from 2nd order optimization for networks.

On Posteriors: Summary
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Given that …

• Data:

• Parameters     are weights of neural networks.

Then, Instead of trying to find a most likely parameters:

• Define prior:

• Bayesian learning of posterior:

• Prediction:

Recap on Bayesian Neural Networks
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• Two different paradigms of statistics (similar to EMAC or VIM).

On Predictions: Bayesian Vs Frequentist
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Frequentist statistics Bayesian statistics

Probabilities are frequency of an 
outcome. Objective and relative 
frequency

Probabilities are your own beliefs
about randomness. Subjective and 
degree of beliefs.

Data is random, not your 
parameters (or no model 
uncertainty exists). Hence, you have 
confidence intervals and point 
estimates.

Data is fixed, but your parameters 
are random variables (parameters or 
model cannot be perfect, and their 
uncertainty is expressed with 
probability theory).

E.g. ensembles such as random 
forest or Ada boost.

E.g. Gaussian processes, Bayesian 
Neural Networks.



• So far, we specified a prior distribution, and have also an approximation 

to the posterior distribution.

• In Bayesian methods, the predictions are also not a point estimate, but 

should be a probability distribution, e.g. GPs.

• A predictive distribution 

should account for 

uncertainty about     .

• Marginalize the uncertain 

quantity to predict! 

On Predictions: Bayesian Predictions
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• No analytical form for such integrals.

• Numerical methods? E.g. Runge-Kutta? Too high dimensional.

• Approximate Solutions can be obtained:

- Monte-carlo integration.

- Linear approximation.

On Predictions: The problem of intractable integrals

> Lecture > Author  •  Document > DateDLR.de  •  Chart 39

𝒑 𝒚∗ 𝓓, 𝒙∗ = න𝒑 𝒚∗ 𝒙∗, 𝒘 𝒑 𝒘 𝓓 𝒅𝒘



• Monte-carlo approximates integrals in large dimensions via sampling.

On Predictions: Monte-carlo Integration
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• Monte-carlo approximates integrals in large dimensions via sampling.

On Predictions: Monte-carlo Integration
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• Monte-carlo approximates integrals in large dimensions via sampling.

On Predictions: Monte-carlo Integration
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• Monte-carlo approximates integrals in large dimensions via sampling.

On Predictions: Monte-carlo Integration
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3. Repeat T times to
approximate the integral.
Then, output is also a distribution!
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• Bias-variance view.

• Uncertainty estimates

can be obtained!

• Convergence rate is

bounded to

• But, expensive!

E.g. 100 times slower

if 100 samples are used.

On Predictions: Monte-carlo integration
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• Aim is again to evaluate the integral:

• Consider that you have the followings:

1. The prior distributions specified as a normal:

2. Trained Neural Networks for MAP estimates:

3. Obtained the posterior distributions with Laplace Approximation:

On Predictions: A Linear Approximation
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• Aim is again to evaluate the integral:

Step 1: Take Taylor expansion on neural network 𝒇 𝒙,𝒘 :

where we define                                   the Jacobian of neural networks.

On Predictions: A Linear Approximation
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• Aim is again to evaluate the integral:

Step 1: Take Taylor expansion on neural network.

Step 2: Recall our random variables are Gaussian distributions:

On Predictions: A Linear Approximation
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then mean is a linear function of w. 



• Aim is again to evaluate the integral:

Step 1: Take Taylor expansion on neural network.

Step 2: Recall our random variables are Gaussian distributions.

Step 3: Further using the rules of Gaussian distributions:

On Predictions: A Linear Approximation
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𝒑 𝒚∗ 𝓓, 𝒙∗ = න𝒑 𝒚∗ 𝒙∗, 𝒘 𝒑 𝒘 𝓓 𝒅𝒘

𝒑 𝒚∗ 𝒙∗, 𝓓 ≃ 𝓝 𝒚 𝒇 𝒙,𝒘∗ , 𝚺

𝒑 𝒚 𝒙,𝒘 ≃ 𝓝 𝒚 𝒇 𝒙,𝒘∗ + 𝒈𝑻 𝒘−𝒘∗ , 𝛔

𝒇 𝒙,𝒘 ≃ 𝒇 𝒙,𝒘∗ + 𝒈𝑻 𝒘−𝒘∗ + 𝜺

𝚺 = 𝛔 + 𝒈 𝒙 𝑻𝑯𝒈 𝒙

Marginal and conditional Gaussians



• Aim is again to evaluate the integral:

• Linear Approximation:                                                   with

• Do not need multiple samples but a good approximation?

On Predictions: A Linear Approximation
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𝒑 𝒚∗ 𝓓, 𝒙∗ = න𝒑 𝒚∗ 𝒙∗, 𝒘 𝒑 𝒘 𝓓 𝒅𝒘

… … ……
𝒑 𝒚∗ 𝒙∗, 𝓓 ≃ 𝓝 𝒚 𝒇 𝒙,𝒘∗ , 𝚺 𝚺 = 𝛔 + 𝒈 𝒙 𝑻𝑯𝒈 𝒙



Aim: Understanding the basics related to Bayesian Neural Networks

1. Point Estimates Vs Model Uncertainty  

2. On Priors of Bayesian Neural Networks.

3. On Posteriors of Bayesian Neural Networks.

4. On Predictions with Bayesian Neural Networks.

5. Bayesian Deep Learning.

Tables of Contents
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• So far, we have learned about researched in 1990s already.

• But, with deep learning, very popular active area of research.

• Many open questions: How to specify prior? An accurate and efficient 

way of computing posterior probabilities? Cheap but accurate ways of 

estimating predictive uncertainty?

• There are some frameworks that might be useful!

Bayesian Deep Learning
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• Dropout as variational inference (MC-dropout):

• Main idea: one can prove that training a neural network with dropout is 

equivalent to performing variational inference (hence result is a Bayesian 

Neural Networks).

Bayesian Deep Learning
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… … ……

1. You have a Bayesian
Neural Network.

Network parameters are Bernoulli
distributions since dropout is!



• Dropout as variational inference (MC-dropout):

• Main idea: one can prove that training a neural network with drop out is 

equivalent to performing variational inference (hence result is a Bayesian 

Neural Networks).

Bayesian Deep Learning
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… … ……

2. Perform prediction with a test sample
using a sample from distribution.

The same as activating dropout at testing.



• Dropout as variational inference (MC-dropout):

• Main idea: one can prove that training a neural network with drop out is 

equivalent to performing variational inference (hence result is a Bayesian 

Neural Networks).

Bayesian Deep Learning

> Lecture > Author  •  Document > DateDLR.de  •  Chart 54

… … ……

3. Repeat this with differently
using different samples from 
activated dropout layers.



• Dropout as variational inference (MC-dropout):

• Main idea: one can prove that training a neural network with drop out is 

equivalent to performing variational inference (hence result is a Bayesian 

Neural Networks).

Bayesian Deep Learning
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… … ……

3. Repeat T times.
Then, output is also a distribution!



• Dropout as variational inference (MC-dropout):

• Main idea: one can prove that training a neural network with drop out is 

equivalent to performing variational inference (hence result is a Bayesian 

Neural Networks).

• Very easy to use. You only enable dropout layers on during testing.

• Assumptions about the model, e.g. use of dropout layers, specific loss.

On Predictions: Monte-carlo Integration
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• Scalable Laplace Approximation

• Main idea: use scalable approximation of the Hessian.

Bayesian Deep Learning
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-

The Hessian for the entire data set  
is approximately the expectation of 
the single H0



• Scalable Laplace Approximation

• Main idea: use scalable approximation of the Hessian.

Bayesian Deep Learning
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Fisher information matrix

“The Fisher information quantifies the amount
of information about the parameter w”

-



• Scalable Laplace Approximation

• Main idea: use scalable approximation of the Hessian.

Bayesian Deep Learning
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Fisher information matrix

where

Assume

uncorrelated layers

-



• Scalable Laplace Approximation

• Main idea: use scalable approximation of the Hessian.

Bayesian Deep Learning
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-

where



• Scalable Laplace Approximation

• Main idea: use scalable

approximation of the Hessian.

• Easy to use as it directly works 

with already trained neural networks.

• Predictions with both monte-carlo method and linear approximation.

• Scales to large data-set and only assumes Hessian exists.

• But, are we making good approximations?

Bayesian Deep Learning
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• Deep Ensembles (a Frequentist approach):

• Main idea: train the same neural networks with different initializations 

and use them as ensembles.

Bayesian Deep Learning
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• Deep Ensembles (a Frequentist approach):

• Main idea: train the same neural networks with different initializations 

and use them as ensembles.

• Easy to use; using the same code for training many times.

• High performing often in practice.

• Memory intensive? Can you load them all on a GPU?

• Model selection? Other downstream tasks of Bayesian methods?

Bayesian Deep Learning
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• Temperature Scaling (a Frequentist approach)

Bayesian Deep Learning
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• Temperature Scaling (a Frequentist approach)

Intuitively, the confidence estimate

of a prediction should correspond

to the true probability of being correct

Bayesian Deep Learning
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classifier test data estimated confidence



• Temperature Scaling (a Frequentist approach)

Intuitively, the confidence estimate

of a prediction should correspond

to the true probability of being correct

Bayesian Deep Learning
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classifier test data estimated confidence

Thus, we want



• Temperature Scaling

• Main idea: Find a scaling factor T (using a set of training samples), that 

ensures calibration.

Bayesian Deep Learning
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• Temperature Scaling

• Main idea: Find a scaling factor T (using a set of training samples), that 

ensures calibration.

• Very simple conceptually

and easy to use.

• Still point estimate 

Vs model uncertainty?

• What about regression?

• Is it really mis-calibrated?

Bayesian Deep Learning
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Data to obtain T



Main Take Aways:

• Bayesian Neural Networks combines Bayesian reasoning with Neural

Networks in order to reduce overfitting, uncertainty estimates, etc.

• The idea is to specify a prior distribution over the parameters, update to

the posterior given data, and use it to make an average prediction.

Bayesian Neural Networks:

• On prior: a normal with zero mean and a variance as default.

• On posterior: Laplace Approximation.

• On predictions: Monte-carlo integration and a linear approximation.

Bayesian Deep Learning:

• Several modern techniques for uncertainty estimation. 

Summary
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