Estimating Model Uncertainty of Neural Networks in Sparse Information Form

Main Idea:

A dual representation of Gaussian distribution:

$$\bar{x} \propto \exp\left\{-\frac{1}{2}(\bar{x}-\mu)^T \Sigma^{-1}(\bar{x}-\mu)\right\}$$
$$= \exp\left\{-\frac{1}{2}\bar{x}^T \Sigma^{-1} \bar{x} + \mu^T \Sigma^{-1} \bar{x}\right\}$$
$$= \exp\left\{-\frac{1}{2}\bar{x}^T \boldsymbol{I} \bar{x} + \mu^{IV} \bar{x}\right\} \text{ or } \bar{x} \sim \mathcal{N}^{-1}(\mu^{IV}, \boldsymbol{I})$$

Our main idea is to estimate the posterior distribution of neural networks with this formulation, also called information form. Key benefits are:

- Approximate Bayesian inference can be simplified to scalable Laplace Approximation with provable guarantees.
- Sparsity can be exploited as information content on each parameters tends to be sparse with over-parameterization.

Bayesian Neural Networks

Bayesian framework of Neural Networks by inferring probability distributions over models weights:

$$p(\theta|x,y) = \frac{p(y|x,\theta)p(\theta)}{p(y|\theta)}$$
(1)

Marginalization over possible values of parameters for predictive uncertainty:

$$p(y^*|x^*, x, y) = p(y^*|x^*, \theta)p(\theta|x, y)d\theta \quad (2)$$

One of the main challenge is scalability!

Important Results:

Bayesian Neural Network with an expressive variational family can scale to large deep neural networks and data-sets (e.g. Dense121 on ImageNet classification task), while the space complexity remains similar to mean-field approximations.

Jongseok Lee, Matthias Humt, Jianxiang Feng and Rudolph Triebel

Institute of Robotics and Mechatronics, German Aerospace Center (DLR)

Approximate Inference

• Use Laplace Approximation:

 $p(\theta|D) \sim \mathcal{N}(\theta_{\text{map}}, I^{-1}) \text{ or } \sim \mathcal{N}^{-1}(\theta_{\text{map}}^{IV}, I).$ Only need estimates of the Hessian of neural networks, e.g. information matrix I.

• Diagonals are known and easy to compute:

 $\boldsymbol{I} = \mathbb{E}[\delta\theta\delta\theta^T]$ and $\boldsymbol{I}_{ii} = \mathbb{E}[\delta\theta_i^2]$

This is not true for the covariance matrix.

• Kronecker Eigen-decomposition plus diagonal:

$$\boldsymbol{I}_{\text{inf}} = (U_A \otimes U_G) \Lambda (U_A \otimes U_G)^T + D$$

Eigenvalues Λ and diagonal matrix D are computed using the known diagonals of information matrix. Leads to a guarantee that the information matrix is more accurate than the state-of-the-art Hessian approximators, e.g. KFAC, w.r.t a norm.

Low Rank Sampling Computations

• Predictive uncertainty requires sampling:

 $p(y^*|x^*) \approx \frac{1}{T} \sum_{t=1}^{T} y^*(x^*, \theta_t^s) \text{ for } \theta_t^s \sim \mathcal{N}^{-1}(\theta_{MAP}^{IV}, \boldsymbol{I}_{\text{inf}}).$ This requires an expensive inversion!

• The devised cheaper computation routine:

1. Low rank approximation while saving Kronecker products in eigenvectors.

$\boldsymbol{I}_{\text{inf}} \approx \boldsymbol{\hat{I}}_{\text{inf}} = (U_a \otimes U_g) \Lambda_{1:L} (U_a \otimes U_g)^T + D$

2. The samples can be drawn from the information form, in which we need an inversion over only L by L matrix rather than the whole parameter space.

Sparsification Algorithm

- Conventional low rank approximation cannot preserve the Kronecker structure!
- We propose a simple Kronecker-based
- sparsification algorithm (shown in figure above).

Results

• ImageNet out-of-distribution detection tasks.

• Space complexity comparisons.

	Diag	KFAC	\mathbf{EFB}	INF
Model	Size	Size	Size	Size
ResNet18	44.6	362.4	407.0	47.0
ResNet50	97.3	586.9	684.2	105.3
ResNet152	229.0	1485.9	1714.9	250.1
DenseNet121	30.1	393.3	423.4	37.0
DenseNet161	108.6	1446.2	1554.7	123.3

• Our approach can scale to large data-sets and architectures such as ImageNet set-ups.

• Expressive posterior family can be made as tractable as mean-field approximations.

• Other experiments can be found in our ICML 2020 paper. Link.

• On how Bayesian Optimization can be used to further improve the performance, and ease the hyperparameter searches. Link.

• On how our method can be used for the task of learning the motion of a car using IMU and monocular cameras. Link.

Extension 1

Open-source Software

• Curvature Library at DLR-RM github