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Return distributions rather than a single, most likely prediction
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[Helmholtz ARCHES – the robot ARDEA][EU 2020 Autopilot – autonomous driving]



Introduction to Bayesian Deep Learning
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𝐩 𝐲∗ 𝐱∗,𝐃 = ∫ 𝐩 𝐲∗ 𝐱∗, 𝛉 𝐩 𝛉 𝐃 𝐝𝛉

𝐩 𝛉 𝐃 =
𝐩(𝐲|𝐱,𝛉)𝐩(𝛉)

𝐩(𝐃)

𝐩 𝐲∗ 𝐱∗,𝐃

• Posterior:

• Prediction:

• Prior: 𝐩(𝛉) Parameters of a neural network

Marginalization

Bayes Theorem



Main idea: represent the posterior distribution in information form
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• Two different parameterizations for Gaussian distribution

• Propose to represent the posterior distribution in the information form

𝛉 ∝ 𝐞−
𝟏
𝟐
𝛉− 𝛍 𝐓𝚺−𝟏 (𝛉−𝛍)

= 𝐞−
𝟏
𝟐
𝛉𝐓𝚺−𝟏𝛉+𝛍𝐓𝚺−𝟏𝛉

= 𝐞−
𝟏
𝟐
𝛉𝐓𝐈𝛉+𝛍𝐈𝐕𝛉

𝚺 = 𝑰−𝟏

𝝁 = 𝑰−𝟏𝝁𝑰𝑽

𝑰 = 𝚺−𝟏

𝝁𝑰𝑽 = 𝚺−𝟏𝝁

Moments Information Form

Covariance matrix and

mean vector

Information matrix and

Information vector



Main idea: Sparse Extended Information Filter [Thrun et al (2004)]
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Extended Kalman Filter Sparse Extended Information Filter 

• Tracks mean and covariance • Tracks information vector and matrix

• Covariance matrix is dense • Information matrix is sparse:
- Constant time updates
- Linear memory complexity 

(b) Dense covariance (c) Sparse information 

matrix

(a) Gaussian Bayesian

tracking



Main idea: represent the posterior distribution in information form
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Covariance Spectrally sparse 

[Sagun et al 2018]

Sparse Information Form for Bayesian Deep Learning

• Inference using scalable Laplace Approximation
- Theoretic guarantee on accuracy

• Information matrix is spectrally sparse:
- Reduced space complexity
- Competitive performance

DenseNet 121

More than 99% are close to zeros!



A sparse representation for deep neural networks posterior distribution,

and its scalable realization!
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[Thomas Bayes] [Geoffrey Hinton] [Sebastian Thrun]
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Approximate Inference in Information Form
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2nd order Tayler

MAP

posterior

• Approximate inference using Laplace Approximation:

*We omit the prior term for the simplicity of the presentation 

𝐩 𝛉 𝐃 ∼𝓝 𝛉𝐦𝐚𝐩 ,𝐇
−𝟏 or ∼𝓝−𝟏 𝛉𝐦𝐚𝐩

𝐈𝐕 ,𝐇 *

• Employ EFB [George et al 2018] to estimate the Hessian H:

𝐇 ≈ 𝐈𝐞𝐟𝐛 = 𝐔𝐀⊗𝐔𝐆 𝚲 𝐔𝐀⊗ 𝐔𝐆
𝐓

𝐔𝐀 𝐢s an eigenvector of 𝐀 = 𝔼[𝐚𝐚𝐓]

𝐔𝐆 is an eigenvector of 𝐆 = 𝔼[𝐠𝐠𝐓]

𝚲𝐢𝐢 = 𝔼[ 𝐔𝐀⊗𝐔𝐆
𝐓 𝛅𝛉

𝐢

𝟐
]

EFB Fisher Information matrix

Forward pass

Backward pass

Eigenvalue updates



Approximate Inference in Information Form

DLR.de  •  Chart 10

• Diagonal elements of true Information matrix is known and easy to compute!

• Resulting Kronecker-factored Eigen-decomposition plus diagonal structured information matrix:

• This step brings a theoretical guarantee on improvements:

Not true for the covariance matrix𝐈 = 𝔼 𝛅𝛉𝛅𝛉𝐓 by definition, and 𝐈𝐢𝐢 = 𝔼 𝛅𝛉𝐢
𝟐 ∀𝐢

𝐈𝐢𝐧𝐟 = 𝐔𝐀⊗𝐔𝐆 𝚲 𝐔𝐀⊗𝐔𝐆
𝐓+𝐃* Exact on the diagonals 

Lemma 1: theoretical guarantees regardless of the chosen data-set and architecture

Let I be the real information matrix, and let 𝐈𝐢𝐧𝐟 and 𝐈𝐞𝐟𝐛 be the INF and EFB estimates of it respectively. 

Then, it is guaranteed to have 𝐈 − 𝐈𝐞𝐟𝐛 𝐅 ≥ 𝐈 − 𝐈𝐢𝐧𝐟 𝐅

* we add this term after sparsification, which will be discussed next 



Low Rank Sampling Computations
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• Computing the predictive uncertainty requires samples from the posterior 

• A naive approach is not sufficient if there are many parameters (e.g. millions) 

Samples from the information form𝐩 𝐲∗ 𝐱∗,𝐃 = ∫ 𝐩 𝐲∗ 𝐱∗, 𝛉 𝐩 𝛉 𝐃 𝐝𝛉

≈
𝟏

𝐓
σ𝐭=𝟏
𝐓 𝐲∗ 𝐱∗, 𝛉𝐭

𝐬 for 𝛉𝐭
𝐬 ∼ 𝓝−𝟏 𝛉𝐦𝐚𝐩

𝐈𝐕 , 𝐈𝐢𝐧𝐟

O(N2): infeasible

O(N3): infeasible

1. Evaluate the matrix:

2. Perform Cholesky decomposition:

3. Draw samples from the distribution:

𝐈𝐢𝐧𝐟 = 𝐔𝐀⊗𝐔𝐆 𝚲 𝐔𝐀⊗𝐔𝐆
𝐓+ 𝐃

𝐈𝐢𝐧𝐟
−𝟏 = 𝐅𝐜𝐅𝐜

𝐓

𝛉𝐭
𝐬 = 𝛉𝐌𝐀𝐏+ 𝐅𝐜𝐗

𝐥 with 𝐗𝐥 the samples of a standard Gaussian

Monte-carlo integration



Low Rank Sampling Computations
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• Step 1: low rank approximation while saving Kronecker products in eigenvectors:

• Step 2: samples with much lower cost and insignificant errors!

𝛉𝐭
𝐬 = 𝛉𝐌𝐀𝐏 + 𝐅𝐜𝐗

𝐥

𝐅𝐜 = 𝐃−
𝟏
𝟐 (𝐈𝐧𝐦 − 𝐃−

𝟏
𝟐 𝐔𝐚⊗𝐔𝐠 𝚲

𝟏:𝐋

𝟏
𝟐 𝐂−𝟏+ 𝐕𝐬

𝐓𝐕𝐬
−𝟏
𝚲
𝟏:𝐋

𝟏
𝟐 𝐔𝐚⊗𝐔𝐠

𝐓
𝐃−

𝟏
𝟐)

D𝐢𝐟𝐟𝐞𝐫𝐬 𝐟𝐫𝐨𝐦 𝐔𝐀⊗𝐔𝐆 𝟏:𝐋𝚲𝟏:𝟏 𝐔𝐀⊗𝐔𝐆
𝐓

𝐔𝐀⊗𝐔𝐆 𝚲 𝐔𝐀⊗𝐔𝐆
𝐓 ≈ 𝐔𝐚⊗𝐔𝐠 𝚲𝟏:𝐋 𝐔𝐚⊗𝐔𝐠

𝐓



Sparsification algorithm
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• How to perform low rank approximation on the Kronecker-factored eigendecomposition?

𝐔𝐀⊗𝐔𝐆 𝚲 𝐔𝐀⊗𝐔𝐆
𝐓 ≈ 𝐔𝐚⊗𝐔𝐠 𝚲𝟏:𝐋 𝐔𝐚⊗𝐔𝐠

𝐓

• Conventional low rank approximation such as singular value decomposition:

Cannot preserve Kronecker structure!

1. Select the top L eigenvalues and then: 𝚲 ≈ 𝚲𝟏:𝐋

2. Using the indices of L eigenvalues, 𝐕 = 𝐔𝐀⊗𝐔𝐆 and 𝐕 ≈ 𝐕𝟏:𝐋



Sparsification algorithm
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Experiments on toy regression
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• A single layer neural network trained on a synthetic data 

• Errors 

• Errors 

• Improved estimates of predictive uncertainty and the 

information matrix

Predictive Uncertainty

Predictive Uncertainty
Ground

truth



Experiments on MNIST and CIFAR10*
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• Convolutional Neural Network trained MNIST and CIFAR10 datasets

• Calibration performance for in-domain (MNIST and CIFAR10)

• Normalized entropy for out-domain datasets (notMNIST and SHVN)

*More experiments on small-scale data such as active learning on UCI can be found in the paper



Experiments on ImageNet
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Deterministic

NN
SWAG SWA Ours



Main contributions
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Matthias Humt Jianxiang Feng Rudolph Triebel

• A novel sparse representation of the posterior distribution for deep neural networks

• Mathematical tools from approximate inference, low rank approximation to sampling computations

• Main msg: information form of Gaussian can bring certain benefits for Bayesian neural networks


