Visual-Inertial Telepresence for Aerial Manipulation

Jongseok Lee, Ribin Balachandran, Yuri S. Sarkisov, Marco De Stefano, Andre Coelho, Kashmira Shinde, Min Jun Kim, Rudolph Triebel and Konstantin Kondak

ICRA 2020 Paris

Knowledge for Tomorrow

Aerial Manipulation and Applications

[M. Laiacker et al (2016)]

[Refinery at Wilhelmshaven, Germany]

- Manipulation of objects with aerial systems endowed with a robotic arm.
- Applicable for inspection and maintenance at difficult-to-reach areas.

Cable-Suspended Aerial Manipulator (SAM) with a Telepresence System

Suspended Manipulator Concept [Y. S. Sarkisov et al (2019)]

Proposed telepresence concept = haptic feedback + virtual reality

Why do we need Virtual Reality?

Problem Statement: 3D information is required for a precise manipulation!

Camera exposures & missing depth

Adaptive sight of view & haptic feedback [Space factory 4.0]

Approach: Use on-board sensors, object localization and CAD models

1. Take sensor data

2. Estimate object pose

3. Create virtual reality with pre-stored CAD models

- Based on an object localization approach with known CAD models of objects.
- Marker based object pose estimation ARToolKitPlus [Wagner et al 2007] with RANSAC.
- Software Instant-reality [Fraunhofer IGD] for the 3D visualization software.

Algorithmic Challenge:

Virtual reality has to closely match the real world!

Important design factors:

- Accuracy
- Speed ✓
- Robustness to loss-of-sight (incl. occlusions) X
- Time delay (for haptic feedback loop) X

Algorithm: Loss-of-sight Compensation

Original

Proposed

Algorithm: Time Delay Compensation

Original

Note: detailed algorithm and quantitative analysis can be found in the paper.

Proposed

DLR

SAM performing a high precision aerial manipulation

DLR

SAM performing deployment and retrieval of inspection robot

Contributions and lessons learned

- We demonstrate that the overall concept is a viable option for future maintenance and inspection tasks which involves advanced aerial manipulation capabilities.
- Object localization approach is proposed for creating virtual reality of the remote scene in real-time, and algorithmic challenges are addressed using visual-inertial odometry.
- Main lessons learned: For real-world deployment of aerial manipulators with telepresence technology, 3D visualization is a necessary component.

